
Ubuntu Server Certified Hardware
Self-Testing Guide

Contents
Introduction 4

Glossary 4

Understanding the Certification Process 6

Creating a Hardware Entry on C3 8

Preparing the Test Environment 11

Ensuring Equipment is Ready 11

Configuring the SUT for Testing 12

Preparing the Network Test Environment 14

Setting up the SUT for Testing 16

Installing Ubuntu on the System 16

Configuring DCPMM Devices for Testing 19

Performing Final Pre-Testing SUT Configuration 21

Setting Up the iperf3 Server 22

Running the Certification Tests 24

Performing ISO Install Tests 30

Manually Uploading Test Results to the Certification Site 33

Requesting a Certificate 34

Appendix A - Installing the Server Test Suite Manually 36

Appendix B - Re-Testing and Installing Updated Tests 37

Running a Limited Test Script 37

Installing and Running Updated Tests 38

Appendix C - Testing Point Releases 40

Appendix D - Network Performance Tuning 41

Improving High-Speed Network Performance 41

Disabling Energy Efficient Ethernet Settings 42

Appendix E - Troubleshooting 44

Fixing Deployment Problems 44

Adding PPAs Manually 44

Submitting Results 45

Resolving Network Problems 45

Fixing Virtualization Test Problems 46

Handling Secure Boot MOKs 47

Handling Miscellaneous Issues During Testing 47

Appendix F - Using SoL 48

Setting Firmware Options 48

Setting Kernel Options 48

Remotely Accessing a Server’s Console 50

Appendix G - Setting Up and Testing a GPGPU 52

Requirements for GPGPU testing 52

Setting Up a GPGPU for Testing 52

GPGPUs that use NVLink 53

Testing the GPGPU(s) 55

Introduction
The aim of this document is to provide the information needed to test a server on-site
using the Canonical Server Test Suite and then submit the results of that testing to
Canonical to meet the requirements for Server Hardware Certification. Testing may be
done with or without an Internet connection.

Glossary
The following definitions apply to terms used in this document.

Blocking test

A test that must pass for the SUT to be granted a certified status.

BMC

Baseboard Management Controller — A device in many server models that enables
remote in- and out-of-band management of hardware.

CSM

Compatibility Support Module — A feature of many UEFI implementations that
enables the machine to boot using older BIOS-mode boot loaders.

DCPMM or NVDIMM

Intel Optane Datacenter Persistent Memory Module — A specialized RAM device
introduced with Cascade Lake that can be configured to provide a block device that
sits on the Memory Bus. Generically these are called NVDIMM or Non-Volatile Dual
In-line Memory Module.

DHCP

Dynamic Host Control Protocol — A method for providing IP addresses to the SUT and
Targets.

IPMI

Intelligent Platform Management Interface — A BMC technology for remotely
connecting to a computer to perform management functions.

KVM (Meaning 1)

Kernel Virtual Machine — A system for running virtual machines on Ubuntu Server.

KVM (Meaning 2)

Keyboard/Video/Mouse — A device for sharing a keyboard, mouse, and monitor
between multiple computers, sometimes over a network; or a BMC feature to enable
remote access to a computer’s console.

LAN

Local Area Network — The network to which your SUT and Targets are connected. The
LAN does not need to be Internet accessible (though that is preferable if possible).

MAAS

Metal as a Service — A Canonical product for provisioning systems quickly and easily.

Non-blocking test

A test that must be performed but will not affect the granting of a certified status.

PXE

Pre-boot Execution Environment — A technology that enables you to boot a
computer using remote images for easy deployment or network-based installation.

RAID

Redundant Array of Independent Disks - Multi-disk storage providing redundancy,
parity checking, and data integrity.

SAN

Storage Area Network — Usually FibreChannel.

Secure ID (SID)

A string that uniquely identifies computers on the certification site,
certification.canonical.com.

SUT

System Under Test — The machine you are testing for certification.

Target

A computer on the test LAN that the SUT can use for network testing. The Target
must be running an iperf3 server, but otherwise does not need any special
configuration. The MAAS server may double as the Target.

Test case

A test to be executed as part of the certification test suite. Test cases include things
such as “stress test of system memory” and “test the CPU for clock jitter.”

Understanding the Certification Process
The workflow for testing SUTs is described in detail in the rest of this document. An
overview is presented in the following flowchart:

The highlights of this process are:

1. Set up your MAAS server and connect it to the test LAN. This process is covered in
the MANIACS document (available from https://certification.canonical.com).

2. Create an entry on https://certification.canonical.com (C3 for short) for the SUT, as
described in more detail shortly, in Creating a Hardware Entry on C3. If an entry
already exists for your specific configuration (not just the model), you should use the
existing entry.

3. Use MAAS to deploy the SUT, as described in the upcoming section, Installing
Ubuntu on the System.

4. Check the SUT’s configuration. (The canonical-certification-precheck script,
described in Running the Certification Tests, is key to this check.)

5. Run the test suite on the SUT, as described in Running the Certification Tests and
Performing ISO Install Tests.

6. Submit the test results to C3. This may be done semi-automatically when running the
tests, or can be done manually, as described in Manually Uploading Test Results to
the Certification Site.

7. If desired, you can request a certificate, as described in Requesting a Certificate.

Creating a Hardware Entry on C3
You can run certification tests without submitting them to C3; however, if you want to
certify the system, you need a C3 account. If you do not have an account for your company
on the private certification web site, or if you do not have access to your company’s account,
please contact your Partner Engineer, who will work with the Server Certification Team to
establish the account.

Additionally, anyone who needs to access the account on C3 will need their own account
on launchpad.net, and their Launchpad account will need to be added to the Access
Control List for the company account. You can create a Launchpad account at
http://launchpad.net/+login. If, after the Launchpad account is created and you have been
added to the ACL, you still can not see the Account Information on C3, try logging out of C3,
clearing any browser cache and cookies, and logging back into C3.

https://certification.canonical.com
https://certification.canonical.com
http://launchpad.net/+login

In order to upload test results to C3, you need to create a hardware entry for the system
which you will be certifying; however, creating a new entry is not always necessary. You
should create an entry if:

• A C3 entry for that specific machine (model and configuration) does not already exist;
and

• You plan to submit certification data for that machine.

You should not create a new entry if:

• C3 already hosts an entry for that specific machine; instead, use the existing entry,
even if it has existing submissions associated with it (say, for an earlier version of
Ubuntu); or

• You don’t plan to submit certification data for this computer.

You can put off creating the C3 entry until after the test, although doing it before testing
is usually preferable. To create an entry you can go directly to:

https://certification.canonical.com/hardware/create-system

If you have problems accessing this site, contact your assigned Partner Engineer.

https://certification.canonical.com/hardware/create-system

The process of creating an entry is outlined in the preceding flowchart. When creating an
entry, you must enter assorted pieces of information:

1. Fill in the details:

• Account — The name of your account. If the account is incorrect or can’t be set,
please contact your account manager for assistance. This field is never
published; it is for internal use only.

• Make — The manufacturer of the system, e.g. Dell, HPE, as you would like it to
appear on the public web site.

• Model — The name of the system itself, e.g PowerEdge R750 or ProLiant DL380
Gen10, as you would like it to appear on the public web site.

• Codename — This is for your internal reference and identifies the internal code
name associated with the SUT. This data is never published and is visible only to
you and to Canonical.

• Web site — This optional field links to the system information on the
manufacturer’s web site. This field is not currently published publicly.

• Comment — This optional field holds any comment you want to make about the
hardware, including things like tester name, test location, etc. These comments
are never made public, they are for internal use only.

• Form factor — The type of system: Laptop, Server, etc. This is not published
directly, but determines where your system is displayed on the public site. Client
form factors appear in one place while server form factors appear elsewhere on
the public certification site. You may select any appropriate Server form factor
for the SUT except for Server SoC, which is reserved for System on Chip
certifications.

• Architecture — The CPU architecture of the SUT. This is used internally and is
not published.

• Confidential — Defaults to False (unchecked). Check the box if the system has
not been publicly announced yet or should remain unpublished for any reason.
This will cause the entire entry to not be published to the public web site.

2. Click Submit.

3. Note the “Secure ID for testing purposes” value. You’ll need this when submitting
the test results. (Note that this value is unique for each machine.)

Preparing the Test Environment
Before you test the hardware, you must perform some initial setup steps. These steps are
preparing ancillary hardware, configuring the SUT for testing, and configuring the test
network.

Ensuring Equipment is Ready
The requirements for running the tests for a server are minimal. Ensure that you have:

• Writable USB sticks with enough free space (> 256 MB). Each stick must contain a
single partition with a writable FAT filesystem on it. Note that a USB stick with

multiple partitions may cause problems, so if necessary you should repartition your
device to have a single partition. Modern computers typically provide both USB 2 and
USB 3 ports, but we require testing of only the fastest USB device — normally the
USB 3 port. If you need to test more than one computer then bring enough USB sticks
to test all the systems.

• Writable SD cards configured with the same rules as the USB sticks. These SD cards
are needed only on those (rare) servers that have external SD card slots.

• A computer to function as an iperf3 Target on the test LAN. This computer must have
network ports that equal or exceed the speed of the fastest network port on your
SUTs.

• A computer to function as a MAAS server on the test LAN. This server will provision
the SUT. (Note that a MAAS server for certification testing should ideally be
configured to automatically install the Server Test Suite on the SUT, which will not be
the case for a “generic” MAAS server.)

Frequently, the MAAS server and iperf3 Target are one and the same computer; however,
sometimes it is desirable to use two computers for these two purposes. The upcoming
section, Preparing the Network Test Environment, covers these servers in more detail.

Configuring the SUT for Testing
The following should be considered the minimum requirements for setting up the SUT
and test environment:

• Minimum loadout

• Minimum of 4 GiB RAM

• 1 internal storage device (HDD, SSD, or NVMe); 2 with minimal RAID

• 1 CPU of a supported type

• Recommended (preferred) loadout

• Maximum supported number of internal storage devices, especially if you can
configure multiple RAID levels (e.g. 2 for RAID 0, 3 for RAID 5, and 6 for RAID 50)

• The largest disk capacity available from the OEM — ideally, over 2 TiB on a single
disk or RAID array

• Maximum amount of supported RAM

• Maximum number of supported CPUs

• If the SUT has multiple disk controllers (such as a motherboard-based disk
controller and a separate RAID controller), we strongly recommend that disk
devices be connected to all controllers during testing.

• All hardware, including CPUs, must be production level. Development level hardware
is not eligible for certification.

• This can be excepted on a case by case basis for pre-release systems where the
Partner and Canonical have arranged certification to be published coinciding with
a SUT’s release announcement.

• If possible, as many processors as the SUT will support should be installed.

• Note that systems that ship with processors from different families (e.g., Coffee
Lake vs. Cascade Lake) will require extra testing.

• CPU speed bumps and die shrinks do not require extra testing.

• The SUT should not contain any extraneous PCI devices that are not part of the
certification.

• This includes things like network, SAN and iSCSI cards.

• Hardware RAID cards are allowed if they are used to provide RAID services to the
SUT’s onboard storage.

• Virtualization (VMX/SVM) should be enabled in the BIOS/UEFI, when supported by
the CPU’s architecture.

• The SUT should be running release or GA level (not development level) firmware.
Development level firmware is generally not eligible for certification.

• The one exception to this rule is that you may use unsigned GA equivalent
firmware if such allows you to flash the system up and down rev as needed.
However, the test results must show the version to be equal to the publicly
available version.

• BIOS/UEFI should be configured using factory default settings, with the following
exceptions:

• Many systems ship with IPMI-over-LAN disabled by default. This will need to be
enabled to ensure MAAS can remotely manage the SUT.

• If the hardware virtualization options in the BIOS/UEFI are not enabled, enable
them, save the settings and allow the SUT to reboot.

• The SUT must be configured so that at least ONE network device is set to
PXE-boot by default.

• If the SUT’s firmware supports PXE-booting in UEFI mode, it must be configured
to boot in UEFI mode, rather than in BIOS/CSM/legacy mode.

• All non-network devices have been removed from the Boot Options so that
Network Booting (PXE) is the only option. The Ubuntu installer will add an
Ubuntu menu option and that is OK, but testing expects the Network Boot device
is the first item in the boot menu.

• On systems where it is impossible to remove non-network boot options,
please ensure that the Network Booting option is the first (default) boot
option so that the machine ALWAYS boots from network first.

• The SUT Firmware should have verifiable identifiers in DMI Types 1, 2 and/or 3 that
match the information entered in the hardware entry on C3.

• For ODMs this means Make and Model data must be accurate in DMI Types 1 and
2.

• For OEMs where Make and Model may not be determined yet, some other
identifier must exist in DMI Types 1, 2 and/or 3 that matches data provided in the
Hardware Entry on C3

• Storage should be properly configured.

• Disks must be configured for “flat” storage — that is, filesystems in plain
partitions, rather than using LVM or bcache configurations. Similarly, software
RAID must not be used.

• The SUT’s BMC, if present, may be configured via DHCP or with a static IP address. If
the BMC uses IPMI, MAAS will set up its own BMC user account (maas) when enlisting
the SUT.

• A monitor and keyboard for the SUT are helpful because they will enable you to
monitor its activities. If necessary, however, certification can be done without these
items.

Preparing the Network Test Environment
Particularly if you’re testing in a location where you’ve never before tested, or if you’re
testing a SUT with unique network hardware, you may need to prepare the network
environment. In particular, you should pay attention to the following:

• In addition to the SUT, the network must contain at least one other machine, which
will run MAAS and an iperf3 server; however, you may want to separate these two
functions.

• The MAAS Advanced Network Installation and Configuration — Scripted
(MANIACS) document (available from https://certification.canonical.com)
describes how to configure a MAAS server. The MAAS server computer itself
does not need to be very powerful by modern standards. MAAS version 3.1 or
later is required for certification work.

• When testing multiple SUTs simultaneously, you will need multiple iperf3
Targets, one for each SUT. If your iperf3 Target has a sufficiently fast NIC or
multiple NICs, you can assign the computer multiple IP addresses and treat each
one as a distinct Target. This topic is covered in more detail in Appendix B of the
MANIACS document. Alternatively, you can run network tests against a single
iperf3 Target sequentially; however, this approach complicates submission of
results. Note that poor network infrastructure may make multiple simultaneous
iperf3 runs unreliable.

• Ideally, the network should have few or no other computers; extraneous network
traffic can negatively impact the network tests.

• The network should have no DHCP or TFTP servers, other than the one provided by
MAAS.

• Network cabling, switches, and the iperf3 server should be capable of at least the
SUT’s best speed. For instance, if the SUT has 100 Gbps Ethernet, the other network
components should be capable of 100 Gbps or faster speeds. If the local network
used for testing is less capable than the best network interfaces on the SUT, the
network test won’t run, and those interfaces must be tested later on a more-capable
network. If the test environment uses separate networks with different speeds, with
the SUT cabled to multiple networks via different ports, you can specify multiple
iperf3 servers, as described later.

• If desired, the MAAS server may be run inside a virtual machine; however, it is
advisable to run the iperf3 server on “real” hardware so as to minimize the risk of
network tests failing because of virtualization issues.

• Every network port must be cabled to the LAN and properly configured with either
DHCP or static addressing. If a SUT has 4 NIC ports, then all 4 must be connected to
the LAN.

https://certification.canonical.com

Setting up the SUT for Testing
Before you can begin testing, you must install Ubuntu on the SUT and perform some
certification-specific configuration tasks on the SUT. Most of the work of these tasks is
performed with the help of MAAS, as described in the following sections.

Installing Ubuntu on the System
Server certification requires that the SUT be installable via MAAS. Therefore, the
following procedure assumes the presence of a properly-configured MAAS server. The
MAAS Advanced Network Installation and Configuration — Scripted (MANIACS)
document describes how to set up a MAAS server for certification testing purposes. This
document describes use of MAAS 3.1.

Once the SUT and MAAS server are both connected to the network, you can install
Ubuntu on the SUT as follows:

1. Power on the SUT and allow it to PXE-boot.

• The SUT should boot the MAAS enlistment image and then power off.

• You should see the SUT appear as a newly-enlisted computer in your MAAS
server’s node list. (You may need to refresh your browser to see the new entry.)

• MAAS 2.6 and later may attempt to commission the node immediately after
enlisting it, thus skipping the next two steps. If this does not happen or if you
want to change the node’s name, you can perform the next two steps manually
after the commissioning attempt.

2. Check and verify the following items in the MAAS server’s node details page:

• If desired, change the node name for the SUT.

• Check the SUT’s power type and ensure it’s set correctly (IPMI, AMT, etc.). If the
SUT has no BMC, you can set it to Manual.

• Note that manual power control is acceptable only on low-end servers that lack
BMCs. If MAAS fails to detect a BMC that is present or if MAAS cannot control a
BMC that is present, please consult the Canonical Server Certification Team.

3. Commission the node by clicking Take Action followed by Commission and then Start
Commissioning for Machine.

• On some systems, it is necessary to remove the smartctl-validate option under
Testing Scripts before clicking Commission Machine.

• If the SUT has a BMC, the computer should power up, pass more information
about itself to the MAAS server, and then power down again.

• If the SUT does not have a BMC, you should manually power on the SUT after
clicking the Start Commissioning for Machine button. The SUT should power up,
pass more information about itself to the MAAS server, and then power down
again.

• Some servers provide an option called “minimum password change interval,” or
something similar, in their BMCs’ web-based interfaces, that prevents BMC
passwords from being changed very frequently. MAAS will attempt to change
the password upon commissioning, though, and if this is done immediately after
enlisting the node, it will fail. If the BMC configuration commissioning step fails,
you may need to set this minimum password change interval to 0 or otherwise
disable this feature, then try commissioning again. Alternatively, checking the
“Skip configuring supported BMC controllers with a MAAS generated username
and password” option when commissioning the node may work around this
problem.

4. Check and, if necessary, adjust the following node details:

• On the Network tab, ensure that all the node’s interfaces are active. (By default,
MAAS activates only the first network interface on most computers.) If an
interface is identified as Unconfigured, click the down arrow in the Actions
column, select Edit Physical, and set IP Mode to Auto Assign, DHCP, or Static
Assign. (The first two cause MAAS to assign an IP address to the node itself,
either by maintaining its own list of static IP addresses or by using DHCP. The
Static Assign option requires you to set the IP address yourself. These three
options are described in more detail in the MANIACS document, available from
https://certification.canonical.com.) When you’ve made this change, click Save
Interface.

• On the Storage tab, look under Available Disks and Partitions for disks that have
not been configured. If any are available, click the down arrow in the Actions
column and select Add Partition. You can then set a Filesystem (specify ext4)
and Mount Point (something under /mnt works well, such as /mnt/sdb for

https://certification.canonical.com

the /dev/sdb disk). Click Add Partition when you’ve set these options. Repeat
this step for any additional disks.

• If MAAS complains that there’s insufficient free space on the device, try
manually reducing the partition’s size by a small amount. Usually rounding
down to the nearest whole number works around this problem.

5. On the MAAS server, verify that the SUT’s Status is listed as Ready in the node list or
on the node’s details page. You may need to refresh the page to see the status
update.

6. Click Take Action followed by Deploy. Options to select the OS version to deploy
should appear.

7. Select the Ubuntu release you want to deploy:

• Choose the Ubuntu version you wish to deploy from the list of available Ubuntu
releases. The options will appear similar to 22.04 LTS “Jammy Jellyfish” in the
middle drop-down box.

• Choose the kernel you wish to deploy. The available kernels are in the dropdown
box below the Ubuntu version. For recent versions of Ubuntu, they will be
named similar to jammy (ga-22.04).

• When deploying the SUT for testing, you should always start out with the
original GA kernel. For 22.04 LTS, the jammy (ga-22.04) option is
appropriate. If the sysetm is not deployable or fails certification using the
GA kernel, you will then need to re-deploy the SUT choosing the correct
HWE kernel option (if available). Note that an HWE kernel option becomes
available only starting with the second point release for an LTS version, such
as 20.04.2 or 22.04.2.

• Do not choose any of the edge or lowlatency kernel options for official
Certification testing.

Appendix C - Testing Point Releases, elaborates on the procedures for testing
different kernels and point releases.

8. Click Deploy Machine to begin deployment.

• If the SUT has a BMC, it should power up and install Ubuntu. This process can
take several minutes.

• If the SUT does not have a BMC, you should power it on manually after clicking
Deploy Machine. The SUT should then boot and install Ubuntu. This process can
take several minutes.

If MAAS has problems in any of the preceding steps, you should first check Appendix E -
Troubleshooting for suggestions. If that doesn’t help, the SUT might not pass
certification. For instance, certification requires that MAAS be able to detect the SUT and,
in most cases, set its power type information automatically. If you have problems with any
of these steps, contact the Canonical Server Certification Team to learn how to proceed;
you might have run into a simple misconfiguration, or the server might need enablement
work.

If MAAS is fully configured as described in the MAAS Advanced Network Installation and
Configuration — Scripted (MANIACS) document, it should deploy the Server Test Suite
automatically. If MAAS doesn’t deploy the Server Test Suite properly, you can do so
manually, as described in Appendix A - Installing the Server Test Suite Manually.

Configuring DCPMM Devices for Testing
Starting with Cascade Lake, Intel servers have included support for Intel Optane DCPMM
devices. These are RAM devices that use the standard DIMM form factor and are
populated alongside standard DIMMs. These special devices can function in one of three
different modes, described below.

• Memory Mode is a configuration where the DCPMMs are dedicated completely to
the traditional volatile RAM role, like any other standard memory DIMM. In this mode,
the certification suite will exercise the DCPMMs using the Memory test cases.

• AppDirect Mode is a configuration where the DCPMMs are presented to the
installed OS as persistent storage devices. AppDirect allows for four different
storage modes, three of which are currently tested using the Disk test cases:

• fsdax — Filesystem-DAX mode is the default mode of a namespace when
specifying ndctl create-namespace with no options. It creates a block device
(/dev/pmemX[.Y]) that supports the DAX capabilities of Linux filesystems (XFS and
ext4 to date). DAX enables workloads or working-sets that would exceed the
capacity of the page cache to scale up to the capacity of persistent memory.
When in doubt, pick this mode.

• sector — Use this mode to host legacy filesystems that do not checksum
metadata or applications that are not prepared for torn sectors after a crash.

Expected usage for this mode is for small boot volumes. This mode is compatible
with other operating systems.

• raw — Raw mode is effectively just a memory disk that does not support DAX.
Typically this indicates a namespace that was created by tooling or another
operating system that did not know how to create a Linux fsdax or devdax mode
namespace. This mode is compatible with other operating systems, but again,
does not support DAX operation.

• devdax — Device-DAX mode enables similar mmap(2) DAX mapping capabilities as
Filesystem-DAX. However, instead of a block device that can support a
DAX-enabled filesystem, this mode emits a single character device file
(/dev/daxX.Y). Use this mode to assign persistent memory to a virtual machine,
register persistent memory for RDMA, or when gigantic mappings are needed. As
of this writing, devdax is not yet supported by tests in Checkbox

• Mixed Mode enables configuring a mix of both Memory and AppDirect spaces using
either the system configuration tools (e.g. Setup/BIOS) or userspace tools after
installation, which requires a reboot afterwards. If using userspace tools, you will
need to use ipmctl for the initial configuration. ipmctl is available via the Universe
repo in 20.04 LTS and later. Using ipmctl you should allocate at least 25% of the
DCPMM space to Memory Mode and the remainder as AppDirect Mode.

This guide provides one path to configuration using Mixed Mode to reduce the amount of
retests necessary to complete certification. Some OEMs may support operation of
DCPMMs in Memory or AppDirect only. If that applies to your SUT, you will need to
configure each mode separately and run retests to ensure both modes have been tested.

Once initial configuration is done using ipmctl, you will need to use ndctl, which is
available from 18.04 LTS onward in the Universe repo, to do the final configuration.

For this step, you should create a fsdax device, a sector device, and a raw device of more
or less equal size.

Once you have configured this, you will need to reboot the SUT to ensure the
configuration is performed. Once you have rebooted the server, you will need to add a
partition table and a partition to each AppDirect device, and format them appropriately
using a supported filesystem (such as ext4).

From this point onward, the Server Test Suite will treat the AppDirect devices as any
other block device and test them accordingly using the various Disk test cases.

Performing Final Pre-Testing SUT Configuration
Once the SUT is deployed, you should be able to log into it using SSH from the MAAS
server. Check the node details page to learn its primary IP address. (Using a hostname will
also work if DNS is properly configured, but this can be fragile.) The username on the
node is ubuntu, and no password should be required when logging in from the MAAS
server or from any other computer and account whose SSH key you’ve registered with the
MAAS server.

You may need to perform a few additional minor tasks before running the Certification
Suite, and keep some other factors in mind as you continue to access the SUT:

• If you want to log in at the console or from another computer, the password is ubuntu,
assuming the certification preseed files are used on the MAAS server. If you’re using a
“generic” MAAS installation, you must set the password manually. Testing at the
console has certain advantages (described shortly).

• You should not install updates to the SUT unless they are absolutely necessary to
pass certification. In that case, the Canonical Certification Team will make the
determination of what updates should be applied.

• You should verify your SUT’s kernel version by typing uname -r. Ubuntu 20.04 GA
ships with a 5.4.0-series kernel and Ubuntu 22.04 ships with a 5.15-series kernel. Note
that, although updated kernels ship with most point-release versions, if you use the
standard MAAS images, lsb_release -a will show that you have the latest
point-release version even if you’re using the GA kernel. It’s the kernel version that’s
important for testing purposes, as elaborated on in Appendix C - Testing Point
Releases.

• If any network interfaces are not configured, you should configure them:

• The best way is to release the node in MAAS, adjust the network configuration as
described in Installing Ubuntu on the System, and re-deploy the node. If the
interfaces don’t show up in MAAS, then you should re-commission the node.

• If MAAS doesn’t detect an interface, or if it requires configuration MAAS can’t
handle, you can reconfigure the network in the deployed installation: Edit
/etc/netplan/50-cloud-init.yaml and activate the changes with
sudo netplan apply. (NetPlan configuration is described in more detail at
https://wiki.ubuntu.com/Netplan/Design.)

https://wiki.ubuntu.com/Netplan/Design

• All disk devices (HDDs, SSDs, NVMes, and DCPMMs) must be partitioned and
mounted prior to testing. Each disk beyond the first one should ideally be configured
with a single partition that spans the entire disk and that uses the ext4 filesystem.

• As with network interfaces, the easiest way to do this is via MAAS before
deployment.

• If necessary, you can manually partition the disk (using gdisk, fdisk, parted, or
similar tools), create filesystems on them (using mkfs or related tools), and mount
them (with the mount command or /etc/fstab file).

• If the SUT has DCPMMs installed, you should configure them prior to running the test
suite. Note: This document assumes that the SUT will support Mixed Mode
operation. If the SUT only supports a single operating mode at a time, you will
need to configure DCPMMs in one mode, run tests, then re-configure the
DCPMMs into the remaining mode and run the appropriate tests separately.

• A MAAS installation configured for certification testing should provision the SUT with
the Server Test Suite and related packages. If you’re using a more “generic” MAAS
setup, you’ll have to install the certification software yourself, as described in
Appendix A - Installing the Server Test Suite Manually.

• If the SUT includes an nVidia GPGPU that is to be tested, please refer to Appendix G -
Setting Up and Testing a GPGPU.

Setting Up the iperf3 Server
Before running the full certification test or any test run that involves network tests, you
should ensure that your iperf3 Target is properly configured. To do so, follow these
steps:

1. On the iperf3 Target, install the certification-tools package from the certification
PPA. (This package should be installed by default when you install maas-cert-server
version 0.3.7 or later; but you may need to install it manually if you’re using another
computer as your iperf3 Target.)

2. On the iperf3 Target, ensure that jumbo frames are configured on high-speed
network interfaces (25 Gbps and faster). You can do this either temporarily or
permanently:

• To make a temporary change, type sudo ip link set ens1f1 mtu 9000,
changing ens1f1 to your high-speed network interface’s name.

• With recent versions of Ubuntu, a permanent change is done by editing the
configuration file in /etc/netplan (such as /etc/netplan/01-netcfg.yaml,
although the exact name may differ). Locate the section for the high-speed
network interface and add the line mtu: 9000. The result might look something
like this, although several options may be different depending on your network
configuration:

ens1f1:
 match:
 macaddress: 24:8a:07:a3:18:fc
 addresses: [172.24.124.1/22]
 dhcp4: false
 mtu: 9000
 optional: true

• Note that setting jumbo frames is not normally necessary on low-speed network
interfaces, and in some cases jumbo frames can cause problems. Specifically,
some EFI-based computers can’t PXE-boot from a MAAS server’s interface that’s
configured to use jumbo frames, and switches that don’t support jumbo frames
can cause problems, too, as described shortly. Thus, you should restrict this
procedure to interfaces from which servers do not PXE-boot, if possible. If this is
not possible and if you have problems PXE-booting computers, you may need to
enable jumbo frames manually only when performing network tests that require
this feature.

• It’s possible to configure the MAAS server to enable jumbo frames automatically
on all nodes deployed on a particular network. Appendix B of the MANIACS
guide describes how to configure MAAS in this way.

3. If iperf3 is already running on the iperf3 server, kill it.

4. On the iperf3 server, type start-iperf3 -a 172.24.124.1 -n 20, changing the IP
address to the interface you want to bring up on the iperf3 Target system and
setting the -n option to the number of iperf3 instances you want to run. The
network test in Checkbox defaults to using one instance for every 10 Gbps of
network throughput being tested, but it may use up to twice that number if
conditions warrant, so you’ll need at least -n 8 to test a 40 Gbps NIC and -n 20 to
test a 100 Gbps NIC. You may find you’ll need another value, though, as described in

Appendix D - Network Performance Tuning. If in doubt, run more iperf3 instances
than you think you’ll need; the cost of running too many instances is very low. You
can configure iperf3 to start automatically by editing a startup script, such as
/etc/rc.local. (The generic /etc/rc.local startup script is not enabled by default in
recent versions of Ubuntu. Numerous online tutorials, such as this blog post,
describe how to enable it.)

5. Repeat the preceding step for every other network interface that may be receiving
iperf3 connections.

6. You may need to enable jumbo frames on any switch(es) between the iperf3 Target
and the SUT. How to do this varies from one switch to another, so you must consult
the switch’s documentation. If a switch drops jumbo-frame traffic, the result can be a
complete failure of communication between two computers configured to use
jumbo frames.

7. If the SUT has high-speed network cards (faster than 10 Gbps), repeat steps 1 and 2
on the SUT.

You don’t need to run all of these steps prior to each test run. Once an iperf3 Target is
properly configured, it should remain configured at least until it’s rebooted; and if you set
an MTU of 9000 in the NetPlan configuration and set the computer to automatically
launch iperf3 on reboot, then everything should come up properly after a reboot.

In some cases, additional network configuration steps may be required to further
optimize performance. Appendix D - Network Performance Tuning describes these steps.
If you run your tests and your network ports all pass, though, there’s no need to consult
this Appendix.

Running the Certification Tests
You can initiate a testing session in a server as follows:

1. Connect to the SUT via SSH or log in at the console. A standard MAAS installation
creates a user called ubuntu, as noted earlier. You can test using either a direct
console login or SSH, but an SSH login may be disconnected by the network tests or
for other reasons.

2. If the SUT provides the suitable ports and drives, plug in a USB 2 stick, plug in a USB 3
stick, plug in an SD card, and insert a suitable data CD in the optical drive. (Note that
USB testing is not required for blade/cartridge style systems unless the blade

https://marsown.com/wordpress/how-to-enable-etc-rc-local-with-systemd-on-ubuntu-20-04/

or cartridge has dedicated USB ports that are not shared via the chassis.) These
media must remain inserted throughout the test run, because the media tests will be
kicked off partway through the run.

3. run the canonical-certification-precheck script, which tests critical configuration
details and fixes some common problems:

• The script completes APT configuration, which is sometimes incomplete at
system installation.

• If the script detects that the /etc/xdg/canonical-certification.conf file is
missing information, it will give you the opportunity to fill it in. This information
includes the SUT’s Secure ID (SID) number and pointers to KVM and LXD image
files.

• Information on some critical configuration details is displayed, followed by a
summary, such as the following:

• Summary results are color-coded, with white for information, green for passed
results, yellow for warnings, and red for problems that should be corrected. In
the preceding output, the Installed RAM value was displayed in yellow because
the system’s RAM is a bit shy of 4 GiB; the USB_Disks line is red because no USB
flash drive was inserted in the SUT; and the UVT_KVM_Image_Check line is red
because the KVM image was not configured. If your terminal supports the
feature, you can scroll up to see details of any warnings or failures.

• If the script identifies any problems, be sure to correct them. Some common
sources of problems include the following:

• If the precheck script fails the NICs_enabled test, you must correct the
problem before testing. You must ensure that all network ports are cabled
to a working LAN and configured as described earlier, in Performing Final
Pre-Testing SUT Configuration.

• If your IPERF test failed, you may need to launch the iperf3 server on the
Target system, as described earlier. Your configuration may need updating
in addition to or instead of this change, though. To do so, edit the
/etc/xdg/canonical-certification.conf file on the SUT so as to specify
your iperf3 server(s). For example:

TEST_TARGET_IPERF = 192.168.0.2,172.24.124.7

If your environment includes multiple iperf3 servers, you can identify them
all, separated by commas. The test suite will attempt to use each server in
sequence until one results in a passed test or until a timeout period of one
hour has passed. You can use this feature if your environment includes
separate networks with different speeds or simply to identify all of your
iperf3 servers. (Note that iperf3 refuses a connection if a test is ongoing,
so you can list multiple iperf3 servers and let the test suite try them all until
it finds a free one.)

• If the Hard_Disks or USB_Disks options failed, you may need to attend to
them. USB flash drives need only be prepared with FAT filesystems and
inserted into the SUT, as described earlier. Most disks have device filenames
of /dev/sda, /dev/sdb, and so on; but some disk devices may appear under
other device names, such as /dev/nvme*. If ls /dev/sd*

shows a disk with no partitions, you should partition the disk (one big
disk-spanning partition is best), create an ext4 filesystem on it, and mount it
(subdirectories of /mnt work well). Repeat this process for each unmounted
disk.

• If the UVT_KVM_Image_Check or LXD_Image_Check tests failed and if your
Internet access is slow, you should download the relevant virtualization
images on the SUT:

1. On a computer with better Internet access, download KVM and LXD
cloud image files from http://cloud-images.ubuntu.com/focal/current/.
In particular, obtain the focal-server-cloudimg-amd64.img,
focal-server-cloudimg-amd64.squashfs, and
focal-server-cloudimg-amd64-lxd.tar.xz files, or the equivalent for
your CPU architecture.

2. Copy those images to any convenient directory on the SUT.

3. Supply the full paths under the section labeled “environment” in
/etc/xdg/canonical-certification.conf. For example:

[environment]
KVM_TIMEOUT = 300
KVM_IMAGE = /home/ubuntu/focal-server-cloudimg-amd64.img
LXD_ROOTFS = /home/ubuntu/focal-server-cloudimg-amd64.squashfs
LXD_TEMPLATE = /home/ubuntu/focal-server-cloudimg-amd64-lxd.tar.xz

Note that the KVM and LXD configurations are separated by several
lines of comments in the configuration file.

A failure of the virtualization image precheck need not be a problem if your
outside network access is good; the test script will attempt to obtain the
virtualization image from public mirrors if it is not present locally.

4. If you’re running the test via SSH, type screen on the SUT to ensure that you can
reconnect to your session should your link to the SUT go down, as may happen when
running the network tests. If you’re disconnected, you can reconnect to your session
by logging in and typing screen -r. This step is not important if you’re running the
Server Test Suite at the console.

http://cloud-images.ubuntu.com/focal/current/

5. Run the certification tests by typing an appropriate command, such as:

$ certify-22.04

In some cases, though, another command may be necessary:

• If you’re testing another Ubuntu version, you must change the version number.

• More exotic options, including running a limited set of tests, are described in
Appendix B - Re-Testing and Installing Updated Tests.

6. The full test suite can take several hours, or in extreme cases over a day, to
complete, depending on the hardware configuration (amount of RAM, disk space,
etc). During this time the computer may be unresponsive. This is due to the inclusion
of some stress test cases. These are deliberately intensive and produce high load on
the system’s resources.

7. If at any time during the execution you are sure the computer has crashed (or it
reboots spontaneously) then after the system comes back up you should run the
certify-22.04 command again and respond y when asked if you want to resume the
previous session.

8. If any tests fail or do not run, a screen will appear that summarizes those tests that
failed or did not run. The summary screen separates failures into two categories:

• Failed Jobs — These failures might be serious, or they might not be. (This issue
is addressed in more detail shortly.)

• Jobs with Failed Dependencies — Failures in this category are not serious. A
failed dependency means that a precondition for even running the test did not
exist. For instance, in the below screen shot, a test intended for IBM
Power-architecture (ppc64el) computers was not run because the SUT used an
x86-64 CPU.

You can use this opportunity to re-run a test if you believe it failed for a transient
reason, such as if your iperf3 server crashed or was unavailable or if you forgot to
insert a USB drive. To re-run tests, use the arrow keys to highlight each test you want
to re-run, press Spacebar to select it, and then press the R key to re-run the selected
tests. If you don’t want to re-run any tests, press F to finish.

9. When the test run is complete, you should see a summary of tests run, a note about
where the submission* files have been stored, and a prompt to submit the results to
C3. If you’re connected to the Internet, typing y at this query should cause the
results to be submitted. You will need either a Secure ID value or to have already
entered this value in the /etc/xdg/canonical-certification.conf file. (The
canonical-certification-precheck script will edit this file appropriately if you
provided the SID when you ran that script.) The script will also prompt you for a
description of the test run. This description is not shared publicly; it’s intended to
help both you and the Server Certification Team identify the purpose of a test run.

10. Copying the results files off of the SUT is advisable. This is most important if the
automatic submission of results fails; however, having the results available as a
backup can be useful because it enables you to review the results off-line or in case
of submission problems that aren’t immediately obvious. The results are stored in

the ~/.local/share/checkbox-ng directory. The upcoming section, Manually
Uploading Test Results to the Certification Site, describes how to upload results
manually to C3.

You can review your results locally by loading submission_<DATECODE>.html in a web
browser. This enables you to quickly spot failed tests because they’re highlighted in red
with a “failed” notation in the Result column, whereas passed tests acquire a green color,
with the word “passed.” Note, however, that a failed test does not necessarily denote a
failed certification. Reasons a test might fail but still enable a certification to pass include
the following:

• A test may be a non-blocking test, as described in the Ubuntu Server Hardware
Certification Coverage document, available from https://certification.canonical.com.
In the preceding screen shot, the Test That System Booted with Secure Boot Active is
such a test.

• Some tests are known to produce occasional false positives — that is, they claim that
problems exist when in fact they don’t. In the preceding screen shot, the Run FWTS
Server Cert Selected Test failure is an example of this condition.

• Some test environments are sub-optimal, necessitating that specific tests be re-run.
This can happen with network tests or if the tester forgot to insert a removable
medium. In such cases, the specific test can be re-run rather than the entire test suite.
In the preceding screen shot, the failed USB tests are examples; the tests failed
because no USB devices were inserted, which is an easily-corrected oversight.

Consult your account manager if you have questions about specific test results.

Performing ISO Install Tests
Beginning with Ubuntu 22.04, tests must be performed to ensure that the SUT can be
installed manually with physical installation media (optical discs or USB flash drives). (For
purposes of this test, a BMC’s virtual media support counts as “physical media.”) These
tests may be run before or after the bulk of the certification tests, as just described.
Results are submitted in a similar way and those results must be referenced in the main
submission, as described shortly. To perform these tests:

1. Download an Ubuntu installation image from
https://cdimage.ubuntu.com/releases/22.04/release/. Be sure to retrieve the server
install image (ubuntu-22.04-live-server-amd64.iso or a variant for your SUT’s
architecture).

https://certification.canonical.com
https://cdimage.ubuntu.com/releases/22.04/release/

2. Write the image to a bootable medium. There are several ways to do this, including:

• You can use any optical disc burner program to write the image to a DVD+R or
similar medium if the SUT has an optical drive. (Note that a CD-R is not large
enough to hold the image; you must use a DVD-sized medium.)

• You can use the Linux dd command to write the image to a USB flash drive, as in
sudo dd if=ubuntu-22.04-live-server-amd64.iso
of=/dev/sdd status=progress, changing /dev/sdd to whatever device file
accesses your USB flash drive. (WARNING: Specifying the wrong device file
can wipe out a hard disk!) Be sure the target disk is large enough to hold the
image; it’s about 1.4 GiB.

• For information on creating a bootable USB drive from Windows or using GUI
Linux tools, see the Burning ISO HOWTO.

• To use the SUT’s BMC to map the .iso file to a virtual medium, consult the SUT’s
documentation.

3. Prepare the SUT. For the most part, the SUT must be configured as described earlier,
in Configuring the SUT for Testing; however, for this test, it must boot from the
removable medium. This can be done on a one-time basis by using the computer’s
one-time boot option, as described shortly.

4. Insert the Ubuntu Live Server medium in the SUT or link the .iso image file as a
virtual medium using the computer’s BMC.

5. Acquire console access. This can be a physical keyboard and monitor connected
directly to the computer or a remote KVM provided by the computer’s BMC or a
remote KVM device.

6. Power on (or reboot) the server.

7. At the appropriate point in the boot process, enter the computer’s boot options
menu. This is typically done by hitting F10, F12, Esc, or some other key at a critical
point. The key to press is usually prompted when it becomes relevant. Consult the
server’s documentation for details. You can then select the boot medium for
booting. The boot medium is usually (but not always) identified by brand name; for
instance, an ADATA USB flash drive will be identified by that brand name. In some
cases, two options appear for the boot medium, one of which includes the string
“UEFI” and one of which doesn’t. Select the “UEFI” option if it’s present.

https://help.ubuntu.com/community/BurningIsoHowto

8. Install Ubuntu Live Sever. The Install Ubuntu Server Tutorial describes how to do this
in detail. For the most part, you can install as described in that Tutorial and using
whatever options are appropriate for your network; however, some items to which
you may need to pay special attention include:

• At least one active network device is desirable for machine access and to
transfer results from the SUT to C3; however, the ISO-install test does not
explicitly test network connections. Therefore, you may opt to configure just
one network device if that’s convenient.

• Certification testing normally requires a “flat” (non-LVM) storage configuration;
however, the ISO-install test does not test storage, so this requirement is
waived for this test. The Live Server installation defaults to an LVM
configuration. You can leave this as-is or change it, as you see fit.

• You can use any username and password you desire. Be sure to remember both
so that you can log in.

• Installing the OpenSSH server is desirable if you want to access the server
remotely; however, this capability is not required if you have physical access to
the server, or access via a BMC’s remote KVM functionality. If you do install the
OpenSSH server, you will have the option to install remote access credentials
from Launchpad or GitHub. Doing so will simplify access.

• When asked whether to install any of the “featured server snaps,” leave them all
de-selected; none are required.

9. When the installation is complete, reboot into the installed system and log in. You
can log in at the console, remotely via a KVM, or remotely via SSH.

10. Install the Server Test Suite by typing the following commands:

$ sudo add-apt-repository ppa:checkbox-dev/beta
$ sudo apt install canonical-certification-server

11. Type test-iso-install. This command runs the ISO-install test.

• You will be prompted for your password early in the test run. Enter it to
proceed.

• The test should take about 2-5 minutes to run. At the end of the test run, you
will be asked whether to submit test results. Respond Y to do so. You will then

https://ubuntu.com/tutorials/install-ubuntu-server

be asked to enter a test description and the computer’s SID value, as with a full
test run.

• If the SUT has no direct Internet access, you can instead extract the test files and
submit them from another computer, as described in the next section, Manually
Uploading Test Results to the Certification Site.

12. If you’ve already created a certificate request based on the main test run submission,
you should locate that certificate request on C3 and add a note that points to the
URL of the results you’ve just uploaded for the ISO-install test. If you have not yet
submitted the machine’s main results, you will have to create a Note linking to the
ISO-install test after you submit those results. (See the upcoming section,
Requesting a Certificate, for information on that process, including attaching Notes
to certificate requests.)

Manually Uploading Test Results to the
Certification Site
If you can’t upload test results to the certification site from the certification program
itself, you must do so manually, perhaps from another computer that runs Ubuntu. At this
time, there is no mechanism for submitting results from an OS other than Ubuntu.

To submit results, you must first add the Hardware Certification PPA and install the
checkbox-ng package. Follow these instructions:

1. Add the Hardware Certification PPA:

$ sudo add-apt-repository ppa:checkbox-dev/stable

$ sudo apt update

2. Install the package:

$ sudo apt install checkbox-ng

3. Run the following command:

$ checkbox-cli submit <SUT_SECURE_ID> <PATH_TO>/submission_<DATECODE>.tar.xz

where:

• <SUT_SECURE_ID> can be found on your system’s page on the certification web
site (http://certification.canonical.com) by looking next to “Secure ID for testing
purposes”:

• <PATH_TO> refers to the location of the submission_<DATECODE>.tar.xz file
(which should be contained in the ~/.local/share/checkbox-ng directory you
copied to the USB key).

• <DATECODE> is a date code. Note that if you re-run the certification suite, you’re
likely to see multiple submission_<DATECODE>.xml files, each with a different
date code, one for each run. Ordinarily, you should submit the most recent file.

You should see output similar to the following for a successful submission:

$ checkbox-cli submit a00D000000XndQJIAZ \
 ~/.local/share/checkbox_ng/submission_2016-03-23T19\:06\:18.244727.xml
Successfully sent, submission status at
https://certification.canonical.com/submissions/status/28d85e09-11d4

Once results submission is complete, use the provided link in the output to review the
results and confirm that they are correct.

Requesting a Certificate
Once you’ve uploaded the data to the certification site, you should review it in the web
interface. If you’re satisfied that there are no problems, you can request a certificate:

1. Click the date link under the Created column in the Submissions section. The result
should be a page showing most of the same information as the previous page, but in
a different format, and restricted to that one test run.

2. Click the Request Certificate link. The result should be a page with a few radio
buttons in which you can enter information:

• Status is fixed at In Progress.

http://certification.canonical.com

• Certified Release indicates the Ubuntu release used for testing, and for which
the certificate will be issued.

• Level indicates the type of certification:

• Certified is for for hardware that’s ready to be deployed with Ubuntu. This is
the option to choose for server hardware as that typically does not ship with
a pre-installed operating system.

• Certified Pre-install is for hardware that ships with a (possibly customized)
version of Ubuntu. This option is used almost exclusively for Client
hardware such as desktops and laptops that typically ship with a
pre-installed operating system.

• Is Private should be checked if the certification should be kept private. Note that
this check box affects the certificate only, not the entry for the computer as a
whole on http://certification.canonical.com. Other public pre-existing
certificates, or those issued in the future, will remain public.

3. Click Submit. You’ll see a new screen in which you can enter more information. In
particular, you can click:

• Link Bug to link to a bug on https://bugs.launchpad.net. This option is available
only to Canonical engineers.

• Create Note or Add Note from Template to create a note. Most systems will
have at least two notes:

• A note titled “Requester” with the name of the person who requested the
certificate is required. This note should be created automatically, but you
may optionally modify it.

• A note titled “Test Notes” is usually present. It describes test-specific quirks,
such as why a failure should be ignored (say, if a network test failed because
of local network problems but succeeded on re-testing). If the
miscellanea/get-maas-version test fails, be sure to specify the version of
MAAS used to deploy the SUT.

In most cases, the “Private” check box should be checked for your notes.

http://certification.canonical.com
https://bugs.launchpad.net

Appendix A - Installing the Server Test Suite
Manually
Ordinarily, MAAS will install the Server Test Suite onto the SUT as part of the provisioning
process. If the MAAS server is not configured to do this, you may use APT to do the job
after deploying the SUT. In order to do this, your lab must have Internet access or a local
APT repository with both the main Ubuntu archives and the relevant PPAs. You can install
the necessary tools using apt-get.

Log in to the server and run the following commands:

$ sudo add-apt-repository ppa:checkbox-dev/stable
$ sudo add-apt-repository ppa:firmware-testing-team/ppa-fwts-stable
$ sudo apt update
$ sudo apt install canonical-certification-server

If you want to run the test suite from an Ubuntu live medium, you must also enable the
universe repository:

$ sudo add-apt-repository universe

Note that running the test suite from a live medium is not accepted for any certification
attempt; this information is provided to help in unusual situations or when debugging
problems that necessitate booting in this way.

During the installation, you may be prompted for a password for mysql. This can be set to
anything you wish; it will not be used during testing. You may also be prompted to
configure the Postfix mail server. Selecting No configuration is appropriate.

At this point, the test suite and dependencies should be installed.

Appendix B - Re-Testing and Installing Updated
Tests
Occasionally, a test will fail, necessitating re-testing a feature. For instance, if a USB flash
drive is defective or improperly prepared, the relevant USB tests will fail. Another
common source of problems is network tests, which can fail because of busy LANs, flaky
switches, bad cables, and so on. When this happens, you must re-run the relevant test(s).
Broadly speaking, there are two ways to re-run tests: via a limited test script and by
installing updated test scripts.

Running a Limited Test Script
In addition to the certify-22.04 test script, several others are provided with the Server
Test Suite:

• If you’re testing a System-on-Chip (SoC) rather than a production server, you should
run certify-soc-22.04.

• If you’re testing a virtual machine, you should run certify-vm-22.04.

• The test-firmware command runs firmware tests.

• The test-functional-22.04 command runs functional tests.

• The test-gpgpu command runs tests on nVidia GPGPUs. (See Appendix G - Setting Up
and Testing a GPGPU for important information related to GPGPU testing.)

• The test-memory command runs memory tests.

• The test-network command runs network tests.

• The test-network-underspeed command runs the network tests with the speed check
disabled. This is helpful in situations where a network device reports an incorrect
maximum speed.

• The test-nvdimm command will run the memory and storage focused tests and some
NVDIMM health checks. This launcher is intended for testing NVDIMMs configured in
mixed mode. (See Configuring DCPMM Devices for Testing for more information.)

• The test-storage command runs tests of storage devices.

• The test-stress command runs CPU, RAM and storage stress tests.

• The test-usb command runs tests of USB ports.

• The test-virtualization command runs virtualization (KVM and LXD) tests.

If you’re testing NVDIMMs alone, you should note that test-nvdimm will run both memory
and storage stress tests and thus will take a while to run. If your NVDIMMs are configured
only in memory or storage mode you can save some time by using the test-memory or
test-storage launchers respectively.

If you’re testing Ubuntu 20.04, change the version number in commands that include it.
Consult your Partner Engineer if you need help deciding which of these tests to run.

When the test run completes, submit the test result in the same way you would for a
complete test run. You can then request a certificate based on the main results (the one
with the most passed tests) and refer to the secondary set of results in the certificate
notes. This procedure ensures that all the necessary data will be present on C3.

Installing and Running Updated Tests
From time to time, a test will be found to contain a bug or need to be updated to deal
with a problem. In such cases, it is often impractical to wait for the fix to work its way
down through Ubuntu’s packaging system, or even through the PPAs in which some of the
relevant tools are distributed. In such cases, the usual procedure for replacing the script
or file is as follows:

1. Consult with the Server Certification Team about the problem; do not install an
updated script from some other source!

2. Obtain the updated file (typically a script) from the Server Certification Team. Store
it on the SUT in the home directory of the test account. For instance, the new script
might be /home/ubuntu/newscript. If necessary, give the new file execute
permissions.

3. On the SUT, rename or delete the original file, as in:

$ sudo rm /usr/lib/checkbox-provider-base/bin/oldscript

4. Create a symbolic link from the new script to the original name, as in:

$ sudo ln -s /home/ubuntu/newscript \
 /usr/lib/checkbox-provider-base/bin/oldscript

5. Run the tests again, using the canonical-certification-server user interface.

In some cases, another procedure might be necessary; for instance, a bug fix might
require installing a new Debian package with the dpkg command, or you might need to
edit a configuration file. The Canonical Server Certification Team can advise you about
such requirements.

Appendix C - Testing Point Releases
Ubuntu LTS releases are updated to a new point release version approximately three
months after each intervening release — that is, 20.04.1 was released in August of 2020
(about three months after 20.04), 20.04.2 was released in February of 2021 (three months
after 20.10), and so on. A similar progression will occur with Ubuntu 22.04. These updates
use the kernels from the latest interim release, which can affect hardware compatibility;
however, the new kernels are supported for a limited period of time compared to the GA
kernel. Therefore, certification can involve testing multiple Ubuntu releases or Linux
kernels:

• The GA release — That is, the version that was released in April of the release year
(2020 for 20.04, 2022 for 22.04). Ubuntu 20.04 shipped with a 5.4.0-series kernel, and
22.04 shipped with a 5.15.0-series kernel.

• The current point release — That is, version 20.04.4, or whatever is the latest release
in the series. Testing point-release versions starting with the .2 point release in
addition to the original GA version serves as a check for regressions in the kernel, and
may be required if the GA kernel doesn’t work on a SUT.

In theory, compatibility will only improve with time, so a server might fail testing with the
original GA kernel because it uses new hardware that had not been supported in April of
the OS release year, but pass with the latest kernel in a subsequent point-release. Such a
server would be certified for that latest version, but not for the original GA release. If
such a situation arises, testing may also be done with intervening kernels so as to
determine the earliest working version of Ubuntu.

If a server fails certification with a more recent kernel but works with an earlier one, this
situation is treated as a regression; a bug report should be filed and note made of the
problem in the certificate request. Please notify your PE about such problems to facilitate
their resolution.

Because x.04.1 releases use the same kernel series as their corresponding GA releases,
testing with x.04.1 point releases is not required.

If you have problems controlling the SUT’s kernel version or installing particular point
releases, then you should consult the Server Certification Team.

Appendix D - Network Performance Tuning
Network devices can pose problems for testing because of improper configuration. A few
steps can help work around such problems. In particular, care must be paid to the
configuration of high-speed network devices. In some rare cases, disabling Energy
Efficient Ethernet settings may have beneficial effects, too.

Improving High-Speed Network Performance
Ubuntu’s default network configuration works fine for most 1 Gbps and 10 Gbps network
devices; however, most servers require a little tweaking of settings to perform
adequately at higher speeds. The iperf3 Target setup procedure described earlier, in
Setting Up the iperf3 Server, configures most of the relevant options; however, in some
cases you may need to further tweak the network settings.

The procedure outlined in Setting Up the iperf3 Server configures the iperf3 Target
system to run multiple iperf3 instances. The reason for doing this is that a single iperf3
thread tends to max out the CPU at some level of throughput — somewhere between 10
Gbps and 20 Gbps using the servers in our test lab. This value may be different on other
hardware, though. If either an iperf3 server or a SUT has less-powerful CPUs, more iperf3
instances may be required; and fewer may be optimal if a CPU is more powerful. If you
suspect your network tests are failing for this reason, you can adjust the -n value in your
start-iperf3 command and then run the network script manually on the SUT, specifying
the number of iperf3 instances it launches via the --num-threads option, as in:

sudo /usr/lib/checkbox-provider-base/bin/network.py test -i ens1f1 \
 -t iperf --iperf3 --scan-timeout 3600 --fail-threshold 80 \
 --cpu-load-fail-threshold 90 --runtime 900 --num_runs 4 --num-threads 20 \
 --target 172.24.124.1

This example sets the number of iperf3 instances to 20. You must adjust the -i option for
the SUT’s interface and the --target value to point to the iperf3 Target. Of course, the
iperf3 Target must also be running at least the specified number of instances. If this
procedure produces acceptable results, you will need to append the exact command you
used and the output of the run to the test result submission in a note.

If you can’t get adequate performance by setting jumbo frames and using multiple iperf3
instances, you may need to tweak additional network settings. This can be done with the

optimize-network script, which is provided by the certification-tools package. This
script takes the name of the network interface as a required argument, using -i or
--interfaces, as in:

sudo optimize-network -i ens1f1

You may need to run this script on the iperf3 Target, on the SUT, or both. Be sure you do
not reboot between running the script and running your network tests, since the
configuration changes will not survive a reboot.

In extreme cases, additional configuration tweaks may be required. The full procedure is
documented at https://certification.canonical.com/cert-notes/network-tuning/.

Disabling Energy Efficient Ethernet Settings
The Energy Efficient Ethernet (EEE; sometimes also called Green Ethernet) option is
intended to save power in various ways. This feature can be present on network devices
of any speed. Usually, it works fine; however, in some rare cases, enabling EEE can cause
dropped packets and other problems. You can check a network device’s EEE settings with
the following command (adjusting the network device name as appropriate):

ethtool --show-eee eno1
EEE settings for eno1:
 EEE status: enabled - active
 Tx LPI: disabled
 Supported EEE link modes: 100baseT/Full
 1000baseT/Full
 Advertised EEE link modes: 100baseT/Full
 1000baseT/Full
 Link partner advertised EEE link modes: 100baseT/Full
 1000baseT/Full

This example shows that EEE is enabled and active on eno1, as shown on the second line of
output. Other possible configurations include enabled but inactive (which happens when
Ubuntu has enabled the feature but the switch doesn’t support it); disabled (when it’s
disabled on the SUT); and unsupported (when the device doesn’t support EEE).

https://certification.canonical.com/cert-notes/network-tuning/

If you suspect that EEE is causing network test failures, you should first check to be sure
it’s enabled and active. If so, you can disable it with the following command (adjusting the
device name, of course):

sudo ethtool --set-eee eno1 eee off

If it’s successful, the command will produce no output. You can verify its success by
re-issuing the ethtool —show-eee eno1 command.

Problems caused by EEE are extremely rare, so it’s unlikely you’ll need to resort to these
procedures.

Appendix E - Troubleshooting

Fixing Deployment Problems
Sometimes a node fails to deploy. When this happens, check the installation output on
the node’s MAAS page. (Click the Logs tab and then click Installation Output.) Often, a
clue to the nature of the problem appears near the end of that output. If you don’t spot
anything obvious, copy that output into a file and send it to the Server Certification Team.

One common cause of deployment problems is IP address assignment issues. Depending
on your MAAS configuration and local network needs, your network might work better
with DHCP, Auto Assign, or Static Assign as the method of IP address assignment. To
change this setting, you must first release the node. You can then click the Network tab
on the node’s summary page in MAAS and reconfigure the network options by using the
Actions field, as described earlier, in Installing Ubuntu on the System.

If, when you try to deploy a GA kernel, MAAS complains that the kernel is too old, try this:

1. Click the node’s Configuration tab in MAAS.

2. Click Edit under Machine Configuration.

3. In the Minimum Kernel radio button, select No Minimum Kernel.

4. Click Save Changes.

5. Try to re-deploy.

Adding PPAs Manually
Sometimes you may need to add a PPA manually. In order for this to work, your SUT must
be able to reach the internet and more specifically reach launchpad.net. If either of those
requirements are not met, you will receive a somewhat confusing message like this:

ubuntu@ubuntu:~$ sudo add-apt-repository ppa:checkbox-dev/stable
Cannot add PPA: 'ppa:checkbox-dev/stable'.
Please check that the PPA name or format is correct.

To resolve this, ensure that your SUT can reach the internet and can reach launchpad.net
directly.

Submitting Results
If submitting results from the Server Test Suite itself fails, you can use the checkbox-cli
program, as described earlier, in Manually Uploading Test Results to the Certification Site.
You can try this on the SUT, but if network problems prevented a successful submission,
you may need to bring the files out on a USB flash drive or other removable medium and
submit them from a computer with better Internet connectivity.

Resolving Network Problems
Network problems are common in testing. These problems can manifest as complete
failures of all network tests or as failures of just some tests. Specific suggestions for
fixing these problems include:

• Check cables and other hardware — Yes, this is very basic; but bad cables can cause
problems. For instance, one bad cable at Canonical resulted in connections at 100
Mbps rather than 1 Gbps, and therefore failures. Some of these failures were
identified in the output as the lack of a route to the host. Similarly, if a switch
connecting the SUT to the iperf3 server is deficient, it will affect the network test
results.

• Use the simplest possible network — Complex network setups and those with
heavy traffic from computers uninvolved in the testing or those with multiple
switches, bridges, etc., can create problems for network testing. Simplifying the
network in whatever way is practical can improve matters.

• Check firewall settings — Successful deployments may require access to several
network sites. These include repositories at archive.ubuntu.com (or a regional
mirror), Ubuntu’s PPA site at ppa.launchpad.net, and Ubuntu’s key server at
keyserver.ubuntu.com. (You may instead use local mirrors of the archive and PPA
sites.) If your site implements strict outgoing firewall rules, you may need to open
access to these sites on ports 80 and/or 443.

• Check the iperf3 server — Ensure that the server computer is up and that the iperf3
server program is running on it. Also ensure that the computer has no issues, such as
a runaway process that’s consuming too much CPU time.

• Verify the iperf3 server is not overworked — The iperf3 server program refuses
connections if it’s already talking to another client. Thus, a SUT may fail its network
test if the iperf3 server is already in use. You may need to re-run the network tests

on one or more SUTs if this is the case. Note that a faster iperf3 server (say, one with
a 10 Gbps NIC used to test 1 Gbps SUTs) requires special configuration to handle
multiple simultaneous connections, as described in the MANIACS guide.

• Ensure the iperf3 server is on the SUT’s local network — The network tests
temporarily remove the default route from the routing table, so the iperf3 server
must be on the same network segment as the SUT.

• Check the SUT’s network configuration — A failure to configure the network ports
will cause a failure of the network tests. Likewise, a failure to bring up a network
interface before testing will cause the test to fail, even if the Server Test Suite
detects the interface.

• Check your DHCP server — A sluggish or otherwise malfunctioning DHCP server can
delay bringing up the SUT’s network interfaces (which repeatedly go down and come
up during testing). This in turn can cause network testing failures.

If you end up having to re-run the network tests, you can do so as described earlier, in
Appendix B - Re-Testing and Installing Updated Tests.

Fixing Virtualization Test Problems
Virtualization tests can fail for a number of reasons. If these tests fail, you should first try
these diagnostic or corrective actions:

• Type sudo apt install -f on the SUT. This command repairs some package
installation problems, which can sometimes cause the KVM test to fail.

• Check your virtualization image sources, as described in Running the Certification
Tests. Note that you may need to check the configuration on the SUT (in
/etc/xdg/canonical-certification.conf) and on whatever server you use to host
your virtualization images.

• If you’re not hosting virtualization images locally, be aware that the virtualization
tests will try to download images from the Internet. In this case, you must ensure that
the SUT has Internet access.

You can run the virtualization tests alone by typing test-virtualization on the SUT.

Handling Secure Boot MOKs
Although most Ubuntu components, such as GRUB, the Linux kernel, and standard Linux
kernel modules, are cryptographically signed with Canonical’s key, some third-party and
specialized modules (notably including some used by the firmware test suite, or fwts) are
not so signed. To use such modules, they must be signed with a machine owner key
(MOK), which is stored in the computer’s NVRAM; and to store the MOK, UEFI Secure Boot
policy requires manual boot-time approval. Thus, if the computer is deployed with Secure
Boot active and certain packages are updated via apt, the apt program will prompt for a
password and, upon reboot, the computer’s console will display a prompt to enter a
password, and the MOK will be added only if the password matches the one you entered
as part of the apt package update. The prompt at reboot has no timeout, so if you can’t
see the console, the reboot will fail.

If console access is not available, it’s best to configure computers with Secure Boot
disabled; however, as a general rule, we encourage use of Secure Boot so as to ensure
that this feature works. “Console access” can be via a remote KVM or even IPMI SoL.
Enabling and disabling Secure Boot generally requires this access, too.

Repeatedly deploying a server with Secure Boot active may result in the accumulation of
multiple MOKs in the computer’s NVRAM. In theory, these could grow to consume
enough space in the NVRAM to cause problems. Typing sudo mokutil —reset at an
Ubuntu console will cause all the MOKs to be deleted; however, this will cause kernel
modules signed with a MOK to fail to load. It’s best to use this command just prior to
releasing a node.

Handling Miscellaneous Issues During Testing
The testing process should be straightforward and complete without issue. Should you
encounter problems during testing, please contact your account manager. Be sure to save
the ~/.local/share/checkbox-ng and ~/.cache/plainbox directory trees as they will
contain logs and other data that will help the Server Certification Team determine if the
issue is a testing issue or a hardware issue that will affect the certification outcome.

If possible, please also save a copy of any terminal output or tracebacks you notice to a
text file and save that along with the previously-noted directories. (Feel free to send us a
photo of the screen taken with a digital camera.)

Appendix F - Using SoL
Many servers support serial-over-LAN (SoL). When configured in this way, the server
mirrors its console output to a serial port device, which in turn is intercepted by the BMC
and made accessible to you. Using SoL may be helpful when a server fails to enlist,
commission, or deploy; or sometimes even if it works correctly but you need to adjust its
firmware settings remotely or obtain a record of early boot messages.

The details of SoL configuration vary from one server to another. Broadly speaking, you
must do three things:

1. Identify (and possibly set) console redirection options in the firmware. If the
computer ships with SoL options active by default, this may not be necessary except
in service of the next step.

2. Set kernel options to redirect kernel output to the correct serial device. This step is
required only if you need to access Linux kernel messages or the login console
remotely.

3. Access the server from another computer by using ipmitool or a similar utility.

Setting Firmware Options
Console access settings are typically set in the firmware setup utility, often under a menu
option called “Advanced” and a sub-option called “Console Redirection” or “Remote
Access.” You must typically specify the serial port device, which is usually described in
DOS form, such as COM1 or later, as well as serial port settings such as bit rate (115,200,
57,600, or similar), flow control, and a terminal type. You can set these options to
whatever you like, but you must remember what the settings are, at least if you want to
use SoL once the Linux kernel has gained control of the computer, because you must
replicate these settings to use SoL after the kernel has taken over.

Setting Kernel Options
If you want to use SoL with the Linux kernel, you must replicate the settings you
discovered or set in the firmware as options passed to the Linux kernel by the boot
loader. The options will look something like this:

console=tty1 console=ttyS2,115200n8

The first console= option tells the computer to continue using its main screen (tty1); the
second one tells it to use a serial port device (ttyS2 in this example), as well, and specifies
the speed and other serial port options. Note that the firmware’s COM1 equates to ttys0 in
Ubuntu, COM2 becomes ttyS1, and so on. Thus, this example tells the kernel to use what
the firmware calls COM3, at 115,200 bps, no parity, and 8 bits.

Once you know what kernel parameters you need to provide, there are three ways to pass
them to the kernel:

• Setting post-deployment kernel options — If Ubuntu is already installed, you can
modify GRUB to pass the relevant options to the node in question. You can do this as
follows:

1. Open /etc/default/grub on the node in a text editor.

2. Set the GRUB_CMDLINE_LINUX_DEFAULT and GRUB_CMDLINE_LINUX lines to resemble
the following, making changes as described earlier:

GRUB_CMDLINE_LINUX_DEFAULT="console=tty1 console=ttyS2,115200n8"
GRUB_CMDLINE_LINUX="console=tty1 console=ttyS2,115200n8"

3. Type sudo update-grub to update the GRUB configuration file,
/boot/grub/grub.cfg.

4. Reboot to activate these changes.

• Setting per-node kernel options — If Ubuntu is not yet installed, you can add the
kernel command line options to a single node by following these instructions:

1. On the MAAS server, type:

$ maas admin tags create name='SoL-ttyS2-115200' comment='SoL ttyS2 115200' \

 kernel_opts='console=tty1 console=ttyS2,115200n8'

Change the kernel options for your node as noted earlier. (You can change the
name and comment, too.) Note that this command assumes you set up the
MAAS server using the maniacs-setup script; if you used some other way, you
may need to register a login via the maas login admin command, which takes a
MAAS URL and API key as options; or use an existing MAAS CLI account name
other than admin, as specified in this example.

2. Using the MAAS web UI, go to the node’s summary page, click Edit, and apply the
SoL-ttyS2-115200 tag to the node you want to deploy in this way. Note that you
can define multiple tags that set different options, such as options for nodes
that use different serial ports or bit rates, and apply different tags to different
nodes.

3. Commission or enlist the node. It should then use the SoL options you’ve just
specified. Note that this procedure will not help you if you’re having difficulties
enlisting a node, since you can apply a tag to a node only after the node has
enlisted.

• Setting global kernel options — If Ubuntu is not yet installed, you can add the
kernel command line options to the Global Kernel Parameters area in the MAAS
settings page (http://localhost:5240/MAAS/settings/). WARNING: This action will
apply these settings to all the nodes you subsequently enlist, commission, or deploy!
Unless they’re all configured to use SoL with the same options, the result can be
enlistment, commissioning, and deployment failures on the nodes that are not
configured to use SoL or that are configured with different settings! Thus, you should
use this option only for a brief period when debugging enlistment, commissioning,
and deployment problems — and commissioning and deployment problems are
better handled using per-node kernel options, as described in the previous bullet
point.

Remotely Accessing a Server’s Console
Once SoL is configured, you can access a node via the ipmitool utility in Ubuntu, or similar
tools in other environments. For instance:

ipmitool -H 172.24.124.253 -I lanplus -U maas -P 2TR2Rssku sol activate

This example accesses the node whose BMC is at 172.24.124.253, using the lanplus (IPMI
v2.0) protocol, a username of maas, and a password of 2TR2Rssku. You may use the same
username and password that MAAS uses, or any other that exist on the BMC with
sufficient privileges.

If you power on the node, you should see its firmware startup messages, possibly
followed by a GRUB menu, kernel startup messages, and subsequent Ubuntu startup
messages. If this is a normal post-deployment boot, these will culminate in a login:
prompt. You should be able to use the SoL session to enter the firmware setup utility

early in the process, or to log in to Ubuntu once deployment is complete. There are
limitations to using SoL; for instance, you must use special escape key sequences to enter
some keyboard characters. (See the ipmitool documentation for details.)

Appendix G - Setting Up and Testing a GPGPU

Requirements for GPGPU testing
• SUT prepared for testing as described in this document

• nVidia GPGPU(s) installed in SUT

• At this time, only nVidia GPGPUs are supported for Certification Testing.

• Internet connection

• The SUT must be able to talk to the Internet in order to download a significant
number of packages from the nVidia repositories.

• Installation of the checkbox-provider-gpgpu package — type sudo
apt install checkbox-provider-gpgpu after deploying the node. This package is
installed from the Certification PPA, which should be enabled when you deployed the
node or installed Checkbox manually.

Setting Up a GPGPU for Testing
New tests cases have been added to test that nVidia GPGPUs work with Ubuntu. With this
addition, GPGPUs can be certified on any Ubuntu LTS Release or Point Release starting
with Ubuntu 18.04 LTS using the 4.15 kernel.

The tool to set up the GPGPU environment for testing is included in the
checkbox-provider-certification-server package and is installed any time the Server
Certification suite is installed on a SUT for testing.

To set up the GPGPU you simply need to do the following:

sudo gpu-setup.sh

This will add the nVidia repo and GPG key to the Ubuntu installation on the SUT, update
the Apt cache and install the Cuda Toolkit and appropriate nVidia drivers for the GPGPUs
installed in the SUT. It will also download the source for a tool called gpu-burn, an open
source stress test for nVidia GPGPUs. Then the script will compile the gpu-burn tool and
exit.

Once the script is complete, you must reboot the SUT to ensure the correct nVidia driver
is loaded.

GPGPUs that use NVLink
Some NVIDIA GPUs use NVLink for inter-device communication. NVLink is a high-
bandwidth, energy-efficient interconnect technology developed by NVIDIA, aimed at
replacing the traditional PCIe method of data transfer between the CPU and GPU or
between multiple GPUs. Server configurations that use NVLink to connect multiple GPUs
require extra configuration before testing can be performed. Failure to configure NVLink
on systems where it is in use will result in the GPU tests failing to successfully run.

You must configure NVLink before launching tests. The following steps are provided as
a guideline and as a general reference to the steps necessary to configure NVLink. It is not
guaranteed that these steps will work in all cases as they depend somewhat on specific
driver versions, tool versions, etc. which can change over time. It is expected that you
understand how to configure your own hardware prior to testing.

Documentation and downloads for nVidia’s Data Center GPU Manager can be found at
https://developer.nvidia.com/dcgm/

The following steps should be performed after running gpu-setup.sh and having
rebooted the machine to ensure that the correct NVIDIA driver has been loaded and the
GPUs are accessible.

1. Determine which driver version you are using:

modinfo nvidia |grep -i ^version
version: 525.105.17

You’re looking for the major version, in this example, 525.

2. Install the datacenter-gpu-manager, fabricmanager and libnvidia-nscq packages
appropriate for your driver version:

sudo apt install nvidia-fabricmanager-525 libnvidia-nscq-525 datacenter-gpu-manager

3. Start the fabricmanager service:

sudo systemctl start nvidia-fabricmanager.service

4. Start the persistence daemon:

https://developer.nvidia.com/dcgm/

sudo service nvidia-persistenced start

5. Start nv-hostengine:

sudo nv-hostengine

6. Set up a group:

dcgmi group -c GPU_Group
dcgmi group -l

The output will show you the GPU groups and the ID number for each.

7. Discover GPUs:

dcgmi discovery -l

The output will show you the GPUs on the machine and the ID number for each.

8. Add GPUs to group:

dcgmi group -g 2 -a 0,1,2,3
dcgmi group -g 2 -i

9. Set up health monitoring:

dcgmi health -g 2 -s mpi

10. Run the diag to check:

dcgmi diag -g 2 -r 1

At this point, NVLink should be configured and ready to go. You can also test this by
quickly running one of the nVidia sample tests such as the one found in
/usr/local/cuda-10.2/samples/1_Utilities/p2pBandwidthLatencyTest which is provided
by the cuda package.

Alternately, you can also cd into /opt/gpu-burn and run a quick test with gpu-burn like so:

./gpu-burn 10

Testing the GPGPU(s)
To test the GPGPU, you only need to run the test-gpgpu command as a normal user, much
in the same manner as you run any of the certify-* or test-* commands provided by the
canonical-certification-server package.

Running test-gpgpu will execute gpu-burn for approximately 30 minutes to 1 hour against
all discovered GPGPUs in the SUT in parallel. Once testing is complete, the tool will upload
results to the SUT’s Hardware Entry on the Certification Portal. You do not need to create
a separate certificate request for GPGPU test results, simply add a note to the certificate
created from the main test results with a link to the GPGPU submission and the
certification team will review them together.

	Introduction
	Glossary
	Understanding the Certification Process
	Creating a Hardware Entry on C3
	Preparing the Test Environment
	Ensuring Equipment is Ready
	Configuring the SUT for Testing
	Preparing the Network Test Environment

	Setting up the SUT for Testing
	Installing Ubuntu on the System
	Configuring DCPMM Devices for Testing
	Performing Final Pre-Testing SUT Configuration

	Setting Up the iperf3 Server
	Running the Certification Tests
	Performing ISO Install Tests
	Manually Uploading Test Results to the Certification Site
	Requesting a Certificate
	Appendix A - Installing the Server Test Suite Manually
	Appendix B - Re-Testing and Installing Updated Tests
	Running a Limited Test Script
	Installing and Running Updated Tests

	Appendix C - Testing Point Releases
	Appendix D - Network Performance Tuning
	Improving High-Speed Network Performance
	Disabling Energy Efficient Ethernet Settings

	Appendix E - Troubleshooting
	Fixing Deployment Problems
	Adding PPAs Manually
	Submitting Results
	Resolving Network Problems
	Fixing Virtualization Test Problems
	Handling Secure Boot MOKs
	Handling Miscellaneous Issues During Testing

	Appendix F - Using SoL
	Setting Firmware Options
	Setting Kernel Options
	Remotely Accessing a Server’s Console

	Appendix G - Setting Up and Testing a GPGPU
	Requirements for GPGPU testing
	Setting Up a GPGPU for Testing
	GPGPUs that use NVLink
	Testing the GPGPU(s)

