

Document ID

Reference architecture

Chapter 1 - Overview
This document provides a complete reference architecture guide for

infrastructure required for machine learning use cases. This document

specifically covers open source machine learning software that includes

Kubeflow using Charmed Kubernetes solution on Dell EMC hardware delivered

by Canonical. This includes Dell EMC PowerEdge servers for workloads and

storage based on Intel® Xeon® Scalable Processors and Dell EMC Networking.

This guide discusses the Dell EMC hardware specifications and the tools and

services to set up both the hardware and software, including the foundation

cluster and the Kubernetes cluster to run machine learning workloads. It also

covers other tools used for the monitoring and management of the cluster in

detail and how all these components work together in the system.

The guide also provides the deployment steps and references to configuration

and automation scripts developed by Dell EMC and Canonical for the

deployment process.

Revisions

Document ID

Revisions

Date Description

March 2020 Initial release

Acknowledgements
This paper was produced by the following:

Author: Andrey Grebennikov

Support:

Other:

The information in this publication is provided “as is.” Dell Inc. makes no representations or warranties of any kind with respect to the information in this

publication, and specifically disclaims implied warranties of merchantability or fitness for a particular purpose.

Use, copying, and distribution of any software described in this publication requires an applicable software license.

Copyright © Dell Inc. or its subsidiaries. All Rights Reserved. Dell, EMC, Dell EMC and other trademarks are trademarks of Dell Inc. or its subsidiaries.

Other trademarks may be trademarks of their respective owners. [02/04/2020] [Reference architecture] [Document ID]

Table of contents

Document ID

Table of contents
Chapter 1 - Overview ... 1

Revisions... 2

Acknowledgements ... 2

Table of contents .. 3

Executive summary ... 5

1 Dell EMC Kubeflow solution overview .. 6

1.1 Kubernetes ... 6

1.2 Kubeflow ... 6

1.3 Core components ... 6

1.3.1 MAAS (Metal as a Service) physical cloud ... 7

1.3.2 Key MAAS Features: .. 8

1.3.3 Juju modelling tool .. 8

1.3.4 Why use Juju? .. 8

1.3.5 Software versions ... 9

2 Dell EMC PowerEdge hardware specifications .. 10

2.1 Dell EMC PowerEdge rack specifications .. 10

2.2 Dell EMC PowerEdge server specifications ... 10

2.3 Rack layout ... 12

3 Network architecture .. 14

3.1 Infrastructure layout .. 14

3.2 Network components .. 14

3.3 Server nodes .. 14

3.4 Leaf switches .. 15

3.5 VLANs ... 15

3.6 Out-of-Band management network .. 15

4 Cluster Infrastructure components ... 16

4.1 How MAAS works ... 16

4.2 MAAS logical design ... 17

4.3 Juju components... 17

4.4 Juju controller - the heart of Juju .. 17

4.5 Charms ... 18

4.6 Bundles ... 18

4.7 Provision ... 19

4.7.1 Deploy ... 19

Table of contents

Document ID

4.8 Monitor and manage ... 19

4.9 Comparing Juju to any configuration management tool ... 20

4.10 Monitoring ... 21

4.10.1 Prometheus .. 21

4.10.2 Grafana .. 21

4.10.3 Telegraf .. 21

4.11 Log Aggregation ... 22

4.11.1 Elasticsearch .. 22

4.11.2 Filebeat... 22

5 Charmed Kubernetes components... 23

5.1 Storage charms .. 23

5.2 Kubernetes charms .. 23

5.2.1 EasyRSA .. 23

5.2.2 Kubernetes-master ... 23

5.2.3 Kubernetes-worker ... 24

5.2.4 Etcd ... 24

5.2.5 Flannel .. 24

5.2.6 API Load Balancer .. 24

6 Kubeflow as machine learning platform ... 25

6.1.1 Kubeflow and charms ... 25

6.1.2 Intel software and system stacks.. 26

6.2 How to use Intel-optimized AI stack? ... 27

7 Conclusion .. 34

Executive summary

Document ID

Executive summary
A Kubernetes cluster is now a common need by many organisations to execute cloud native workloads.

Kubeflow is an open, community driven project to make it easy to deploy and manage a machine learning

(ML) stack on Kubernetes. Dell EMC, Intel and Canonical have worked together to test and build a reference

architecture that details software, hardware, and integration points of all solution components for deploying

and operating Kubeflow. The architecture provides prescriptive guidance and recommendations for:

• Hardware design

• Infrastructure nodes

• Cloud nodes

• Storage nodes

• Network hardware and design

• Software layout

• System configurations

This architecture can be used as a starting point for infrastructure teams to setup and deploy Kubeflow for on-

premises infrastructure. Machine learning is a powerful tool that is gaining wide acceptance across all industry

segments to solve various problems and is helping achieve state of the art results thanks to the plethora of

data available and access to high-performance compute infrastructure. Kubeflow is a good candidate for

deploying and working with ML components as it enables a seamless transition using containers to deploy

and scale ML code from developer systems to scale-out infrastructure without any code modifications.

Kubernetes and Kubeflow together truly democratise ML for organisations and makes it possible for all

organisations to accelerate their journey to becoming an AI enabled company.

.

Document ID

1 Dell EMC Kubeflow solution overview

The Dell EMC rack level solution for Kubeflow is comprised of pools of compute, storage and networking

resources which are managed through a single point of rack management. All nodes in the rack are Dell

PowerEdge servers handling compute, control, and storage functions, as assigned by the Metal as a Service

(MAAS) management nodes.

1.1 Kubernetes

This architecture guide is based on Charmed Kubernetes - upstream code of Kubernetes release 1.16

delivered by Canonical. Canonical commercially distributes and supports the pure upstream version of

Kubernetes. Ubuntu is the reference operating system for Kubernetes deployments, making it an easy way to

build Kubernetes clusters. In Ubuntu, Kubernetes is delivered in the form of snaps - the universal Linux app

packaging format - which dramatically simplifies the installation and upgrades of components.

Canonical’s Discoverer programme family of services provides the service to design, deploy, manage and
support customer clouds in POC, development, pre-production and production environments.

Canonical reference architectures are delivered on a converged infrastructure approach, where any of the

servers can accommodate more than one specific Kubernetes role or service simultaneously. This converged

approach has many benefits, including simplicity of operation and management overhead. Canonical can also

deploy Kubernetes in a more traditional manner, grouping servers per role - controllers, storage, and

container pods.

1.2 Kubeflow

The architecture guide introduces the machine learning platform Kubeflow. Canonical is an active member of

the Kubeflow community and strongly believes in its role in democratising AI/ML by making model training

and deployment as frictionless as possible. Canonical delivers the upstream components of the Kubeflow

ecosystem as the add-on to the Kubernetes, wrapping it with automation so that it can be easily deployed,

managed and upgraded.

1.3 Core components

Component Codename

Persistent Storage Ceph RBD

Compute Kubernetes Worker (Docker based)

Machine Learning Platform Kubeflow

Networking Flannel or Canal

Logging Graylog

Monitoring Prometheus

Document ID

The standards-based APIs are the same between all Kubernetes deployments, and they enable customer

and vendor ecosystems to operate across multiple clouds. The site specific infrastructure combines open and

proprietary software, Dell EMC hardware, and operational processes to deliver cloud resources as a service.

The implementation choices for each cloud infrastructure are highly specific to the requirements of each site.

Many of these choices can be standardised and automated using the tools in this reference architecture.

Conforming to best practices helps reduce operational risk by leveraging the accumulated experience of Dell

EMC and Canonical.

Canonical’s Metal as a Service (MAAS) is used as a bare metal and virtual machine (VM) provisioning tool.
The foundation cluster is composed of MAAS and other services (running in highly available (HA) mode) that

are used to deploy, manage and update the Kubernetes cluster nodes.

1.3.1 MAAS (Metal as a Service) physical cloud

Metal as a Service (MAAS) is a complete automation of physical servers for data centre operation efficiency

on premises, it is open source software supported by Canonical.

MAAS treats physical servers like virtual machines, or instances in the cloud. Rather than having to manage

each server individually, MAAS turns bare metal into an elastic cloud-like resource.

MAAS provides management of a large number of physical machines by creating a single resource pool out

of them. Participating machines can then be provisioned automatically and used as normal. When those

machines are no longer required they are "released" back into the pool. MAAS integrates all the tools you

require in one smooth experience. It includes:

• Web UI, optimised for mobile devices

• Ubuntu, CentOS, Windows, RHEL and SUSE installation support open source IP Address Management

(IPAM)

• Full API/CLI support

• High availability

• IPv6 support

• Inventory of components

• DHCP and DNS for other devices on the network

• DHCP relay integration

• VLAN and fabric support

• NTP for the entire infrastructure

• Hardware testing

• Composable hardware support

MAAS works with any system configuration, and is recommended by the teams behind both Chef and Juju as

a physical provisioning system.

Document ID

1.3.2 Key MAAS Features:

Feature Description

Automation Automatic discovery and registration of every device on the
network. BMC (IPMI, AMT and more) and PXE (IPv4and
IPv6) automation.

Fast deployment Zero-touch deployment of Ubuntu, CentOS, Windows,
RHEL and SUSE. Deploys Linux distributions in less than
5 minutes.

Machine configuration Configures the machine’s network interfaces with bridges,
VLANs, bonds and more. Creates advanced file system
layouts with RAID, bcache, LVM and more.

DevOps integration Integration with DevOps automation tools like conjure-up,
Juju, Chef, Puppet, SALT, Ansible and more.

Pod management Turns bare-metal servers into hypervisors, allowing
automated creation of virtual machines, and presents them
as new servers available for the deployment.

Network management Observes and catalogues every IP address on the network
(IPAM). Built-in highly available DHCP (active-passive) and
DNS (active-active).

Service tracking Monitors and tracks critical services to ensure proper
operations.

General management Comes with a REST API, Web UI and CLI.

1.3.3 Juju modelling tool
Juju is an open source application modelling tool that allows quick and efficient deployment, configuration,

scaling, and operation of cloud infrastructures on public clouds such as AWS, GCE, and Azure; along with

private clouds such as MAAS, OpenStack, and VMware VSphere.

The Juju store allows access to a wide range of best practice solutions which can be deployed with a single

command. Juju can be used from the command line or through its powerful graphical representation of the

model in the GUI.

1.3.4 Why use Juju?

Whether it involves machine learning, deep learning, container orchestration, real-time big data or stream

processing, big software needs operations to be open source and automated.

Juju encapsulates all the ops knowledge required to automate the behaviour of the application.

Document ID

1.3.5 Software versions

The following versions of software are part of this reference architecture:

Component Version

Ubuntu 18.04 LTS (kernel 4.15)

Kubernetes 1.16

MAAS 2.6.x

Juju 2.7.x

KubeFlow 0.6

Document ID

2 Dell EMC PowerEdge hardware specifications
The reference architecture solution is based on the Dell EMC PowerEdge R640, R740xd and R740xd2. The

reference architecture uses the following rack and server specifications.

2.1 Dell EMC PowerEdge rack specifications

Component type Component description Quantity

Rack Standard data center rack (1) with
enough capacity to hold 12x 1RU
nodes, and 3x 1RU switches

1

Chasis Dell PowerEdge R740xd (3
Infras3 Cloud nodes)

Dell PowerEdge R740 (3 Cloud
nodes)

Dell PowerEdge R740xd2 (4
storage nodes)

6

3

4

Data switches S5248F-ON (25G ToR, 48 ports) 2

iDRAC/Provisioning switch S3048-ON 1

2.2 Dell EMC PowerEdge server specifications

Dell EMC PowerEdge R640 server specifications

Component type Component description Quantity

Processor Intel Xeon Gold 6248 2.5G,
20C/40T, 10.4GT/s, 27.5M Cache,
Turbo, HT (150W) DDR4-2933

2

Memory 32GB RDIMM 2666MT/s Dual
Rank

12

Drive controller PERC H740P Mini (Embedded) 1

Network Daughter card Intel X710 Quad Port 10GbE
SFP+, rNDC

1

Additional network card Intel XXV710 Dual Port
25GbESFP28 PCIe Adapter, Low
Profile

1

Boot system DellEMC BOSS controller card
Dell/Intel 240Gb M.2 SATA SSD
(configured as RAID1)

1

Document ID

Data drives 960GB SSD SAS Mix Use
12Gbps512n 2.5in Hot-plug Drive,
PX05SV,3 DWPD,5256 TBW

6

OOB license iDRAC9, Enterprise 1

Dell EMC PowerEdge R740xd server specifications

Component type Component description Quantity

Processor Intel Xeon Gold 6248 2.5G,
20C/40T, 10.4GT/s, 27.5M Cache,
Turbo, HT (150W) DDR4-
2933Intel Xeon Gold6248 6126
2.6G, 12C/24T, 10.4GT/s ,
19.25M Cache, Turbo, HT (125W)
DDR4-2666

2

Memory 32GB RDIMM 2666MT/s Dual
Rank

12

Drive controller PERC H740P Mini (Embedded) 1

Network Daughter card Intel X710 Quad Port 10GbE
SFP+, rNDCIntel X520 DP 10Gb
DA/SFP+, + I350 DP 1Gb
Ethernet

1

Additional network card Intel XXV710 Dual Port
25GbESFP28 PCIe Adapter, Low
Profile

1

Boot system DellEMC BOSS controller card
Dell/Intel 240Gb M.2 SATA SSD
SSDSCKJB240G7R (configured
as RAID1)

1

Data drives 960GB SSD SAS Mix Use
12Gbps512n 2.5in Hot-plug Drive,
PX05SV,3 DWPD,5256 TBW

6

OOB license iDRAC9, Enterprise 1

Dell EMC PowerEdge R740xd2 server specifications

Component type Component description Quantity

Processor Intel Xeon Gold 6248 2.5G,
20C/40T, 10.4GT/s, 27.5M Cache,
Turbo, HT (150W) DDR4-
2933Intel Xeon Gold6248 6126
2.6G, 12C/24T, 10.4GT/s ,

2

Document ID

19.25M Cache, Turbo, HT (125W)
DDR4-2666

Memory 32GB RDIMM 2666MT/s Dual
Rank

12

Drive controller PERC H740P Mini (Embedded) 1

Network Daughter card Intel X710 Quad Port 10GbE
SFP+, rNDCIntel X520 DP 10Gb
DA/SFP+, + I350 DP 1Gb
Ethernet

1

Additional network card Intel XXV710 Dual Port
25GbESFP28 PCIe Adapter, Low
Profile

1

Boot system DellEMC BOSS controller card
Dell/Intel 240Gb M.2 SATA SSD
SSDSCKJB240G7R (configured
as RAID1)

1

Data drives 960GB SSD SAS Mix Use
12Gbps512n 2.5in Hot-plug Drive,
PX05SV,3 DWPD,5256 TBW

6

OOB license iDRAC9, Enterprise 1

2.3 Rack layout

The reference deployment of Canonical Kubernetes on the Dell EMC PowerEdge utilises three nodes as

infrastructure nodes, seven nodes as cloud nodes and an additional four for dedicated storage. The reference

deployment uses the following purpose:

Node inventory

Node Purpose

Rack1-MAAS1, Rack1-MAAS2, Rack1-
MAAS3

Infra #1 (MAAS, Juju, LMA)

Rack1-cloud1, Rack1-cloud2, Rack1-
cloud3, Rack1-cloud4, Rack1-cloud5,
Rack1-cloud6,

Converged node handling Kubernetes components

Rack1-storage1, Rack1-storage2,
Rack1-storage3, Rack1-storage4

Storage functions

Document ID

Document ID

3 Network architecture

A Dell EMC KubeFlow solution is agnostic to the top of rack (ToR) switch a customer may choose for out-of-

band (OOB) management. The reference implementation in this document uses the Dell EMC S3048-ON

switch for this purpose. Two of the Dell EMC Networking S5248F-ON switches are used at the leaf-layer of

the standard leaf-spine topology. The two switches are used to implement high availability on the data

network. A pair of switches of similar or better capacity may be added at the spine-layer of the topology, if

desired.

3.1 Infrastructure layout

The network consists of the following major network infrastructure layouts:

• Data network infrastructure: The server NICs and the leaf switch pair. The leaf switches are connected to

the data center user networks and carry the main service traffic in / out of the reference architecture.

• Management network infrastructure: The BMC management network, which consists of iDRAC ports and

the OOB management ports of the switches, are aggregated into a 1-rack unit (RU) Dell EMC

PowerConnect S3148 switch. This 1-RU switch in turn can connect to the data center management

network.

• MAAS Services: The MAAS Rack Controllers (see below) provide DHCP, IPMI, PXE, TFTP and other

local services on the provisioning and iDRAC network. Ensure that the MAAS DCHP server is isolated

from the data center DHCP server.

3.2 Network components

The following component blocks make up this network:

• Server nodes

• Leaf switches and networks

• VLANs

• Out-of-Band Management switch and network

3.3 Server nodes

To create a highly available solution, the network must be resilient to the loss of a single network switch,

network interface card (NIC) or bad cable. To achieve this, the network configuration uses channel bonding

across the servers and switches.

There are several types (or modes) of channel bonding, however only one is recommended and supported for

this solution: 802.3ad or LACP (mode=4)

The endpoints for all nodes are terminated to switch ports that have been configured for LACP bonding mode,

across two Dell EMC S5248F-ON’s configured with VLT across them. For details regarding network
configuration on the servers, please contact your Dell EMC services and sales representative.

Document ID

Supported channel bonding modes

Node type Channel bonding type

Infrastructure nodes 802.3ad (LACP mode 4, channel fast)

Cloud nodes 802.3ad (LACP mode 4, channel fast)

3.4 Leaf switches

This reference implementation uses two Dell EMC Networking S5248F-ON switches. There is a redundant

physical 2x40GbE connection between the two switches. The recommended architecture uses Dell EMC VLT

between the switches in the leaf pair.

3.5 VLANs

This reference architecture implements at a minimum four separate networks through Layer-2

VLANs. Multiple networks below can be combined into single subnet based on end user

requirements.

VLAN Channel bonding type

OOB Management Used for the iDRAC network

Internal Used for cluster provisioning, monitoring and
management

External Used for communication between cluster
components, as well as external access to the
workloads, also for consuming persistent storage
resources by the workloads

Storage (cluster) Used for replicating persistent storage data between
units of Ceph

3.6 Out-of-Band management network

The Management network of all the servers is aggregated into the Dell EMCPowerConnect S3148-ON in the

reference architecture. One interface on the Out-of-Band (OOB) switch provides an uplink to a

router/jumphost.

The OOB management network is used for several functions:

• The highly available software uses it to reboot and partition servers.

• When an uplink to a router is added and the iDRACs are configured to use it as a gateway, there are

tools for monitoring the servers and gathering metrics on them. Discussion of this topic is beyond the

scope of this document. Contact your Dell EMC sales representative for additional information.

Document ID

4 Cluster Infrastructure components

The infrastructure nodes are composed of the following services and tools that are configured for high

availability:

• MAAS

• Juju

• Monitoring

• Log aggregation

This section provides details about how each of these components work.

4.1 How MAAS works

MAAS has a tiered architecture with a central Postgres database backing a region controller (regiond) that

deals with operator requests. Distributed rack controllers, or (rackd) provide high-bandwidth services to

multiple racks. The controller itself is stateless and horizontally scalable, and only presents a REST API.

Rackd provides DHCP, IPMI, PXE, TFTP and other local services. They cache large items like operating

system install images at the rack level for performance but maintain no exclusive state other than credentials

to talk to the controller.

MAAS is a mission critical service that provides infrastructure coordination upon which HPC and cloud

infrastructures depend. High availability in the region controller is achieved at the database level. The region

controller will automatically switch gateways to ensure high availability of services to network segments in the

event of a rack failure.

Document ID

4.2 MAAS logical design

4.3 Juju components

For an overview of Juju, refer to the Juju modelling tool. This section discusses the working of

different components of Juju.

4.4 Juju controller - the heart of Juju

The Juju controller manages all the machines in the running models and responds to the events

that are triggered throughout the system. It also manages scale-out, configuration, and placement

of all models and applications.

Juju controller has to be located in the same physical segment of the network as OpenStack cluster,

and be able to execute calls to MAAS API and connect to OpenStack Cluster nodes.

Juju controller is supposed to be created using a set of KVM Virtual machines mentioned in the

previous steps.

Document ID

4.5 Charms

Charms are a collection of scripts that contain all of the operations necessary to deploy, configure,

scale, and maintain cloud applications with Juju. Charms encapsulate a single application and all

the code and know-how that it takes to operate it, such us how to combine and work with other

related applications, or how to upgrade it.

Charms also allow a hierarchy, with subordinate charms to complement a main service.

4.6 Bundles

Bundles are ready-to-run collections of applications that are modelled to work together and can

include particular configurations and relations between the software to be deployed.

Bundles may also be optimized for different deployment scenarios of the same software. For

example, a scale-out, production-ready version like the Canonical Distribution of Kubernetes, or a

development-friendly test version like Kubernetes Core.

Bundles perform the following functions:

• Install

• Configure

• Connect

• Upgrade and update

• Scale-out and scale-back

• Perform health checks

• Undertake operational actions

• Benchmark

Juju supports UI representation of deployed bundles. The Graphic User Interface allows dynamic

manipulation with a cluster’s configuration options and layout prior to the bundle deployment, and

also dynamic configuration during the lifetime.

Document ID

4.7 Provision

Juju allows to specify desired number of machines to be added to the cluster. It is possible to

request machines based on various constraints, alternatively Juju requests machines automatically.

4.7.1 Deploy
Juju allows to layout the application across the existing machines, dynamically scale application on

existing infrastructure or onto new machines. Also it is possible to re-deploy entire application

infrastructure to another cloud, with a few clicks of the mouse.

4.8 Monitor and manage

The Juju controller manages:

• Multiple models

• All machines (physical and virtual) in all running models

• Scale out, configure and placement

• User accounts and identification

• Sharing and access

Document ID

4.9 Comparing Juju to any configuration management tool

Juju provides a higher level of abstraction, and supplies the tools needed to manage the full scope

of operations beyond deployment and configuration management, regardless of the machine on

which it runs.

One of the main advantages of Juju is the dynamic configuration ability, which enables users to:

• Reconfigure services on the fly.

• Add, remove, or change relationships between services.

• Scale in or out with ease, shares the operational knowledge and makes the most of the wider community.

Document ID

4.10 Monitoring

Canonical Kubernetes solution includes a monitoring suite based on the best open source tools

available.

From an architectural standpoint, monitoring suite consists of Telegraf (host metric collection),

Prometheus (monitoring server) and Grafana (monitoring dashboard).

4.10.1 Prometheus
Prometheus is a systems and services monitoring system. It collects metrics from

configured targets at given intervals, evaluates rule expressions, displays the results, and can

trigger alerts if some condition is observed to be true.

4.10.2 Grafana
Grafana is the leading graph and dashboard builder for visualizing time series metrics.

Kubernetes-related dashboard

4.10.3 Telegraf
Telegraf is a client-side system that collects information about the status of the host services and

makes them available for pulling by any monitoring solutions (in this architecture Prometheus).

Document ID

4.11 Log Aggregation

The solution also implements the Graylog suite for log aggregation, which makes it easy for

customers to have visibility on the different logs from their cloud services without accessing them

directly.

Sample of log aggregation dashboard.

4.11.1 Elasticsearch
Elasticsearch is a distributed database used for storing indexed logs and acts as the backend for

Graylog.

4.11.2 Filebeat
As a log forwarder, Filebeat tails various log files on the client side and quickly sends this

information to Graylog for further parsing and enrichment, or to Elasticsearch for centralized storage

and analysis.

Overall the composition of monitoring and logging tools and their relation to Kubernetes and storage

components is represented below.

Document ID

5 Charmed Kubernetes components

This chapter presents detailed information about the Kubernetes components included as charms in

Charmed Kubernetes.

5.1 Storage charms

Ceph is a distributed software-defined storage solution designed to provide excellent performance,

reliability, and scalability. Canonical uses Ceph by default for storage; however, this can be

replaced by, or complemented with, another storage solution.

Ceph cluster consists of the following logical components, each deployed with its own charm:

• Ceph monitor (cluster logic and the access endpoint)

• Ceph OSD (cluster capacity)

• Rados Gateway (S3 and OpenStack Swift functionality)

5.2 Kubernetes charms

5.2.1 EasyRSA
EasyRSA is the PKI used by Charmed Kubernetes to build and deploy x509 certificates used to

secure the communication between the various layers of Charmed Kubernetes: etcd cluster,

Kubernetes API and others.

It is a simple CLI tool that Juju leverages via SSH implemented over the charm relation protocol.

Charms consuming certificates can query the relation to get access to the CA cert, or ask for the

creation of separate server or client certificates.

5.2.2 Kubernetes-master
The Kubernetes Master is in charge of managing the Kubernetes cluster. It is made of 3 underlying

components:

• The API Server is in charge of being the interface between the administrators and users of the cluster and

the cluster itself, but also provides services within the cluster

• The Scheduler is in charge of allocating pods to their nodes

• The Controller Manager is in charge of maintaining the cluster in a desired state

All of these applications are stateless and can be scaled in and out very easily. The state of the

cluster is saved in the etcd database.

Document ID

5.2.3 Kubernetes-worker
The Worker is the component that runs the compute tasks in Kubernetes. It is based on two core

elements:

• The kubelet is the Kubernetes Agent that executes the plan and drives Docker and manipulates the core

objects of the Kubernetes API

• The kube-proxy is a service that drives iptables to make sure that the translation between services and

pods is efficiently rendered.

5.2.4 Etcd

Etcd is the database holding the state of the cluster at any point in time. It is a critical element in

Kubernetes, since damaging the DB (or worse, losing it) will irreparably impact the state of the

cluster. Also, anyone with write access on etcd can potentially modify the state of the cluster.

5.2.5 Flannel
Flannel is a virtual network that gives a subnet to each host for use with container runtimes.

This charm will deploy flannel as a background service, and configure CNI for use with flannel, on

any principal charm that implements the kubernetes-cni interface.

As Flannel is usually great for the Proof-of-Concept deployments, it is highly recommended to use

other networking solutions such as Canal (Calico/Flannel) for production deployments.

5.2.6 API Load Balancer
The API load balancer is a simple nginx service that exposes a proxied endpoint to the Kubernetes

API. It converts the API default port 6443 to run on the more classic 443.

Document ID

6 Kubeflow as machine learning platform

Kubeflow is a composition of open source tools for developing, orchestrating, deploying, and

running scalable and portable machine learning workloads on top of Kubernetes.

At the high level Kubeflow is comprised of the following components and functionalities:

• Jupyter notebooks - an open-source application that allows users to blend code, equation-style notation,

free text and dynamic visualisations to give data scientists a single point of access to their experiment

setup and notes.

• Katib (hyper-parameter tuning) - Hyper-parameters are set before the machine learning process takes

place. These parameters (e.g. topology or number of layers in a neural network) can be tuned with Katib.

Katib supports various ML tools such as TensorFlow, PyTorch and MXNet, making it easy to reuse

previous experiments results.

• Pipelines - facilitate end-to-end orchestration of ML workflows, management of multiple experiments and

approaches, as well as easier re-use of previously successful solutions into a new workflow. This helps

developers and data scientists save time and effort.

• Serving - Kubeflow makes two service systems available: TensorFlowServing and Seldon Core. These

allow multi-framework model serving and the choice should be made based on the needs of each project.

• Training - model training is possible with various frameworks, in particular TensorFlow, Chainer, MPI,

MXNet and PyTorch. These cover the most popular frameworks in the data science and AI/ML space,

ensuring that developers are able to use Kubeflow’s MLOps features with their favourite tools.

Utilising Kubernetes as the infrastructure for Kubeflow installation unlocks the possibility for

dynamic scaling of platform components, as well as addition of new or upgrading existing

components at any time.

6.1.1 Kubeflow and charms
Canonical delivers Kubeflow components in an automated fashion, using the same approach and

toolset as for deploying the infrastructure and Kubernetes cluster - with help of Juju.

The current version of Juju is able to register an existing Kubernetes cluster as the target and

deploy software on top of that using operator approach with help of Juju Kubernetes charms.

It either utilises the existing Juju controller that is used for deploying the infrastructure, or bootstraps

new controller on top of Kubernetes as the pod. In this reference architecture, the latter approach is

used.

Once deployed, Juju registers the model of the Kubeflow cluster that describes the desired components

layout, configuration options if necessary, optionally the details of images and scaling options.

Document ID

The end user experience when deploying and operating the deployment on top of bare metal

infrastructure and Kubernetes is identical, however the same charms can not be used for both

deployment substrates.

Canonical has developed and tested the set of charms automating the delivery of the most

demanded components of Kubeflow, providing the reference bundle that can be re-used when

deploying to a Kubernetes cluster.

6.1.2 Intel software and system stacks
Kubeflow components responsible for training and serving the models are able to be deployed on

the commodity hardware, however it is recommended to choose the proper combination of software

and hardware to achieve the best performance.

Intel provides optimized frameworks, tools, libraries and SDKs to quickly develop, train and deploy

solutions, including Intel® Distribution for Python, Intel® Data Analytics Acceleration Library (Intel®

DAAL) library, Intel-optimized XGBoost and Intel-optimized Tensorflow for Intel® Xeon

processors. Intel® Data Analytics Acceleration Library (Intel® DAAL) library is an easy-to-use

library that boosts big data analytics and machine learning performance.

Intel has also developed a Deep learning reference stack - a set of container images based on

optimised libraries that utilise additional features of Second Generation Intel Xeon Scalable

processors.

https://jaas.ai/kubeflow/bundle/170
https://software.intel.com/en-us/distribution-for-python
https://software.intel.com/en-us/intel-daal
https://software.intel.com/en-us/distribution-for-python
https://software.intel.com/en-us/intel-daal
https://software.intel.com/en-us/intel-daal
https://software.intel.com/en-us/intel-daal
https://github.com/intel/stacks/tree/master/dlrs

Document ID

Using these images with Kubeflow allows the developer to dramatically increase the speed of models training

(TensorFlow and PyTorch training jobs) and model serving (SeldonCore). The stack reference includes

various images allowing the users to choose the set of optimised libraries based on their unique use case,

while they all benefit from the hardware acceleration.

To learn more, go to https://software.intel.com/en-us/

6.2 How to use Intel-optimized AI stack?

As mentioned earlier, Intel develops deep learning stack along with distributing individual optimized

containers. Additionally, For optimized distributed containerized experience on Tensorflow, Intel is working

with Google to provide a Dockerfile with Intel-optimized Tensorflow + Horovod for an easier user experience

on Intel® Xeon processors. This section will provide the steps on how to use Intel-optimized Tensorflow on

MNIST and Intel brain imaging deep learning use case on Canonical Kubernetes (K8s) stack

1. Clone the Tensorflow github repository. The dockerfile is compatible with 1.x Tensorflow versions

git clone https://github.com/tensorflow/tensorflow

git checkout r1.15

2. Build the docker image with Intel-optimized Tensorflow + Horovod + OpenMPI DockerFile

cd tensorflow/tensorflow/tools/dockerfiles/dockerfiles/mkl_horovod/

docker build --build-arg TF_PACKAGE=intel-tensorflow --build-arg

TF_PACKAGE_VERSION=1.15 -t intel-mkl-tf-horovod:1.0

https://software.intel.com/en-us/
https://github.com/tensorflow/tensorflow

Document ID

3. Start the container and do a quick sanity check if Intel® MKLDNN is enabled

Docker run -it intel-mkl-tf-horovod:latest bash

python -c "import tensorflow; print(tensorflow.pywrap_tensorflow.IsMklEnabled())"

This should print “True”. If the sanity check prints “False”, the common cause would be building the
image from a wrong source or missing “mkl” configuration flags.

4. Train the MNIST dataset keras sample available using the wget command at:

https://github.com/horovod/horovod/blob/master/examples/keras_mnist_advanced.py

For quick debugging

mpirun -np 2 python keras_mnist_advanced.py --epochs 2

5. Once successful, quit the container (Ctrl + D) and build the app docker image with Intel-optimized Tensorflow

+ Horovod + OpenMPI + MNIST sample and push it to the docker hub

• Create a DockerFile with the following instructions to build the app

FROM intel-mkl-horovod-tf:1.0

RUN apt-get update && apt-get install -y git

RUN wget

https://raw.githubusercontent.com/horovod/horovod/master/examples/keras_mnist_adv

anced.py

RUN pip install keras h5py psutil

• Build the docker image

docker build -t intel-mkl-tf-horovod-mnist:1.0

• Push the intel-mkl-tf-horovod-mnist:1.0 image to the docker hub

https://docs.docker.com/engine/reference/commandline/push

6. Login to the Canonical K8s to run the MNIST sample. Create a yaml file “intel-mnist.yaml” to run the
app as a mpijob. A sample yaml file we used is below. Note that all the workers are running in the

same node. Change the “image” to the app image name you pushed into the docker hub

https://github.com/horovod/horovod/blob/master/examples/keras_mnist_advanced.py
https://docs.docker.com/engine/reference/commandline/push/

Document ID

apiVersion: kubeflow.org/v1alpha2

kind: MPIJob

metadata:

 name: intel-mnist

spec:

 cleanPodPolicy: Running

 mpiReplicaSpecs:

 Launcher:

 replicas: 1

 template:

 spec:

 containers:

 - command: ["/bin/sh"]

 args: ['-c', 'mpirun -np 2 python keras_mnist_advanced.py --epochs

2']

 image: <your docker hub>/intel-mkl-horovod-mnist:1.0

 name: intel-mnist

 resources:

 limits:

 cpu: 1

 nodeSelector:

 env: "mpi-test"

 Worker:

 replicas: 2

 template:

 spec:

 containers:

 - image: <your docker hub>/intel-mkl-horovod-mnist:1.0

 name: intel-mnist

 resources:

 limits:

 cpu: 1

 restartPolicy: OnFailure

 nodeSelector:

 env: "mpi-test"

 slotsPerWorker: 1

7. Assuming the mpi-operator is installed on your K8s, submit a kubernetes job to train the mnist model

kubectl apply -f intel-mnist.yaml

8. Watch the launcher and 2 workers train the mnist model.

kubectl get pods | grep intel-mnist

Document ID

9. Train(repeat steps 7 and 8) with varying mpi process and workers. Update the yaml file “args” from mpi
process 2 to 4, 8 and the “replicas” from 2 to 4, 8 and notice the training time for each epoch drop

significantly while maintaining the accuracy

• With 4 processes

Epoch 1/2

 3/117 [..............................] - ETA: 13:36 - loss: 2.2748 - accuracy:

0.1719 3/117 [..............................] - ETA: 13:39 - loss: 2.2681 -

accuracy: 0.1901 3 5/117 [>.............................] - ETA: 13:08 - loss:

2.2269 - accuracy: 0.1953 5/117 [>.............................] - ETA: 13:08 -

loss: 2.2189 - accuracy: 0.2047 5 7/117 [>.............................] - ETA:

12:46 - loss: 2.1615 - accuracy: 0.2422 7/117 [>.............................] -

ETA: 12:46 - loss: 2.1777 - accuracy: 0.22

……

Test loss: 0.049240677943918856

Test accuracy: 0.9836999773979187

Test loss: 0.049240677943918856

Test accuracy: 0.9836999773979187

Test loss: 0.049240677943918856

Test accuracy: 0.9836999773979187

Test loss: 0.049240677943918856

Test accuracy: 0.9836999773979187

• With 8 processes

Epoch 1/2

2/58 [>.............................] - ETA: 7:33 - loss: 2.2766 - accuracy:

0.1523 2/58 [>.............................] - ETA: 7:36 - loss: 2.2647 -

accuracy: 0.1836 2/58 [>. 3/58 [>.............................] - ETA: 6:52 -

loss: 2.2329 - accuracy: 0.2083 3/58 [>.............................] - ETA: 6:52

- loss: 2.2373 - accuracy: 0.2083 3/58 [>. 4/58 [=>............................]

- ETA: 6:32 - loss: 2.1646 - accuracy: 0.2539 4/58

[=>............................] - ETA: 6:31 - loss: 2.1897 - accuracy: 0.2285

4/58 [=> 5/58 [=>............................] - ETA: 6:12 - loss: 2.1557 -

accuracy: 0.2250 5/58 [=>............................] - ETA: 6:11 - loss: 2.1438

- accuracy: 0.2547 5/58

Test loss: 0.06327981026750058

Test accuracy: 0.980400025844574

Test loss: 0.06327981026750058

Test accuracy: 0.980400025844574

Test loss: 0.06327981026750058

Test accuracy: 0.980400025844574

Test loss: 0.06327981026750058

Test accuracy: 0.980400025844574

Test loss: 0.06327981026750058

Test accuracy: 0.980400025844574

Test loss: 0.06327981026750058

Test accuracy: 0.980400025844574

Document ID

Test loss: 0.06327981026750058

Test accuracy: 0.980400025844574

Test loss: 0.06327981026750058

Test accuracy: 0.980400025844574

Intel Unet Brain Imaging use case

Try this procedure on the brain imaging Unet sample. The instruction to run the Unet model is

available at https://github.com/IntelAI/unet/tree/master/3D. Clone the repository and follow steps 1

through 5 from the Readme and run the train_horovod.py script

mpirun -np 2 --map-by slot --rank-by core --oversubscribe --report-bindings

python train_horovod.py --bz 2 --data_path <dataset_dirr>Task01_BrainTumour --

epoch 2

1. Build the Unet app docker image with Intel-optimized Tensorflow + Horovod + OpenMPI + Unet brain

imaging sample and push it to docker hub

• Create a DockerFile with the following instructions to build the app

FROM intel-mkl-tf-horovod:1.0

RUN git clone https://github.com/IntelAI/unet.git \

 pip install keras tqdm h5py psutil nibabel

• Build the docker image

docker build -t intel-mkl-tf-horovod-brain-imaging:1.0

• Push the intel-mkl-tf-horovod-brain-imaging:latest image to the docker hub

https://docs.docker.com/engine/reference/commandline/push

10. Login to the Canonical K8s to run the brain imaging app. Create a yaml file “intel-brain-imaging.yaml” and a
PVC volume to mount the containers with brain imaging dataset. A sample yaml file to run a mpijob we used

is below.

apiVersion: kubeflow.org/v1alpha2

kind: MPIJob

metadata:

 name: intel-brain-imaging-4

spec:

 cleanPodPolicy: Running

 mpiReplicaSpecs:

 Launcher:

 replicas: 1

https://github.com/IntelAI/unet/tree/master/3D
https://docs.docker.com/engine/reference/commandline/push/

Document ID

 template:

 spec:

 containers:

 - command: ["/bin/sh","-c"]

 args: ['-c', 'cd unet/3D; mpirun -np 1 --map-by slot --rank-by core -

-oversubscribe --report-bindings python train_horovod.py --bz 2 --data_path /data

--epoch

2']

 image: <your docker hub>/intel-mkl-horovod-tf-brain-imaging:1.0

 name: intel-brain-imaging-4

 volumeMounts:

 - mountPath: "/data"

 name: intel-brain-volume

 readOnly: true

 resources:

 limits:

 cpu: 1

 volumes:

 - name: intel-brain-volume

 persistentVolumeClaim:

 claimName: nfs1

 nodeSelector:

 env: "mpi-test"

 Worker:

 replicas: 1

 template:

 spec:

 containers:

 - image: <your docker hub>/intel-mkl-horovod-tf-brain-

imaging:1.0

 name: intel-brain-imaging-4

 volumeMounts:

 - mountPath: "/data"

 name: intel-brain-volume

 readOnly: true

 resources:

 limits:

 cpu: 1

 restartPolicy: OnFailure

 volumes:

 - name: intel-brain-volume

 persistentVolumeClaim:

 claimName: nfs1

 nodeSelector:

 env: "mpi-test"

 slotsPerWorker: 1

Document ID

11. Assuming the mpi-operator is installed on your k8s, submit a kubernetes job to train the unet model

kubectl apply -f intel-brain-imaging.yaml

12. Watch the launcher and workers train the Unet model. Also you can verify that MKLDNN is enabled from the

launcher jobs

Kubectl get pods

kubectl logs <launcher job id>

Log snippet

….
Data Format = channels_last

Tensorflow version: 1.15.0

Intel MKL-DNN is enabled = True

Keras API version: 2.3.1

….
….

A github repo with detailed instructions on both these use cases will be released soon. The article will be

updated with the repo details for users to seamlessly reproduce

Document ID

7 Conclusion
DellEMC, Canonical and Intel deliver this joint solution that allows organizations to start exploring the

capabilities of the open source machine learning platform Kubeflow, providing the services of AI enablement.

